• 제목/요약/키워드: Greenhouse gases emission

검색결과 321건 처리시간 0.034초

에너지분야 온실가스 인벤토리의 불확도에 관한 연구: Tier 1 에러전파방법을 이용한 추정 (An Analysis of Uncertainties in Energy Category: Estimation by using Tier 1 Method)

  • 황인창;진상현
    • 자원ㆍ환경경제연구
    • /
    • 제23권2호
    • /
    • pp.249-280
    • /
    • 2014
  • IPCC는 국가별 온실가스 배출량이 얼마나 확실한 값인가를 보여줄 수 있는 불확도를 함께 보고하도록 규정하고 있다. 그렇지만 한국 정부는 IPCC 기본값을 그대로 적용하고 있는 수준에 불과하며, 그나마도 결측된 값들이 있어서 전체적인 불확도를 산정하지 못한 채 항목별 불확도만을 나열하고 있을 뿐이다. 이에 본 논문에서는 국가 온실가스 배출량의 85.3%를 차지하는 에너지분야를 대상으로 Tier 1 수준의 에러전파방법을 이용해서 온실가스 인벤토리의 불확도를 추정하고 있다. 분석결과 국내 에너지분야 온실가스 배출량의 불확도는 3.4%였으며, 이는 핀란드와 유사한 수치인 것으로 밝혀졌다. 그렇지만 온실가스별로는 이산화탄소의 불확도가 2.7%에 불과했지만, 메탄은 116%, 아산화질소는 473%에 달할 정도로 차이가 큰 것으로 나타났다. 따라서 본 논문에서는 한국 정부가 에너지분야의 불확도를 낮추려면 이산화탄소 보다는 메탄과 아산화질소를 대상으로 활동도뿐만 아니라 배출계수의 개선이 필요하다는 정책적 함의가 제시될 수 있었다. 결론적으로는 IPCC 기본값 대신에 신뢰도 높은 한국 고유의 배출계수를 개발하는 작업이 필요함을 제안하고 있다.

가축분퇴비 및 토양개량제 처리가 온난화 가스 배출에 미치는 영향 (Effects of Livestock Compost and Soil Conditioner Application on Greenhouse Gases Emission in Paddy Soil)

  • 이경보;김종구;신용광;이덕배;이상복;김재덕
    • 한국환경농학회지
    • /
    • 제24권2호
    • /
    • pp.117-122
    • /
    • 2005
  • 논 토양으로부터 발생된 지구온난화 가스의 배출 제어 기술을 구명하기 위하여 논 토양에서 가축분퇴비 및 토양개량제 시용에 따른 온실가스 배출 양상을 검토하였다. 축분퇴비 시용에 따른 $CH_4$ 배출량은 우분퇴비 처리구가 331 kg $ha^{-1}$로 가장 많았으며, 돈분퇴비 시용구는 282 kg $ha^{-1}$, 계분퇴비 시용구는 294 kg $ha^{-1}$이었다. $N_2O$ 배출량은 계분퇴비 시용구가 1.78 kg $ha^{-1}$, 돈분퇴비 시용구가 1.78 kg $ha^{-1}$, 우분퇴비 시용구가 1.60 kg $ha^{-1}$이었다. 반면에 볏짚을 시용한 처리구의 $N_2O$ 배출량은 1.44 kg $ha^{-1}$이었다. 지구온난화 지수(global warming potential : GWP)는 우분퇴비 처리구가 7,447 kg $ha^{-1}$로 가장 많았으며, 돈분퇴비 시용구는 6,474 kg $ha^{-1}$, 계분퇴비 시용구는 6,726 kg $ha^{-1}$ 그리고 볏짚시용구는 6,956 kg $ha^{-1}$이었다. 토양개량제 시용에 의한 온난화 가스 배출시험에서 석회 시용구의 $CH_4$ 배출량은 다근 처리에 비해 373 kg $ha^{-1}$로 가장 많았으며, 규산 시용구는 264 kg $ha^{-1}$, 인공제올라이트 시용구는 239 kg $ha^{-1}$ 그리고 볏짚 시용구는 310 kg ha-1이었다. $N_2O$ 배출량은 석회 시용구가 1.49 kg $ha^{-1}$, 규산 시용구가 1.40 kg $ha^{-1}$, 인공제올라이트 시용구가 1.38 kg $ha^{-1}$이었다. 지구온난화지수(GWP)는 석회 처리구가 8,295 kg $ha^{-1}$, 규산 시용구는 5,978 kg $ha^{-1}$, 인공제올라이트 시용구는 5,447 kg $ha^{-1}$ 그리고 볏짚 시용구는 6,956 kg $ha^{-1}$이었다.

An Integrated Emission Model of Greenhouse Gases to Assess Regional Climate Change

  • Moon, Yun-Seob;Oh, Sung-Nam;Hyun, Myung-Suk
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.421-422
    • /
    • 2003
  • Greenhouse gases (GHGs) such as carbon dioxide ($CO_2$), methane (CH$_4$), nitrous oxide ($N_2$O), chlorofluorocarbons (CFCs), sulphur hexafluoride (SF$_{6}$), together with water vapour ($H_2O$) and ozone play an important role in determining the earth's climate. The primary cause of the enhancement of GHGs is the global use of fossil fuels to generate heat, power, and electricity for a growing world population, as well as the changes in the land use, especially for agriculture. In addition, biomass buring and biofuel emissions play major roles in the GHG emissions in the Asian region because they produce large amounts of carbon monoxide (CO), nonmethane volatile organic compounds(NMVOC), black carbon(BC) and other gases. (omitted)d)

  • PDF

에너지사용시설의 온실가스 배출 특성 연구 -유연탄 화력발전소의 이산화탄소를 중심으로- (Development of Emission Factors for Greenhouse Gas (CO2) from Bituminous coal Fired Power Plants)

  • 전의찬;사재환;이성호;정재학;김기현;배위섭
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.107-116
    • /
    • 2006
  • The main purpose of this study is to develop the greenhouse gas emission factor for power plant using bituminous coal. The power plant is a major source of greenhouse gases among the sectors of fossil fuel combustion, thus information of its emission factors is very essential to the establishment of control strategies for the greenhouse gas emissions. These emission factors derived in this study were compared with those of U. S. EPA, AGO and CCL. The $CO_{2}$ concentrations in the flue gas were measured using NDIR analyser and the GC-FID with a methanizer. The amount of carbon (C) and hydrogen (H) in fuel was measured using an elemental analyzer. Calorific values of fuel were also measured using a calorimeter. Caloric value of bituminous coal used in the power plants were 5,957 (as received basis), 6,591 (air-dried basis) and 6,960 kcal/kg (dry basis). Our estimates of carbon emission factors were lower than those of IPCC. The CO2 emission factors for the power plants using bituminous coal were estimated to be 0.791 Mg/MWh (by carbon contents and caloric value of the fuel) and 0.771 Mg/MWh (by $CO_{2}$ concentration of the flue gas). The $CO_{2}$ emission factors estimated in this study were $3.4\sim 5.4\%$ and $4.4\sim 6.7\%$ lower than those of CCL (2003) and U. S. EPA (2002).

진공 및 이산화탄소 삼중유리 시스템의 최적 두께 및 열관류율 분석 (Analysis of the Optimal Thickness and the Heat Transmission for the Triple Glazing System with Vacuum and Carbon Dioxide Gaps)

  • 백상훈
    • 토지주택연구
    • /
    • 제11권3호
    • /
    • pp.61-68
    • /
    • 2020
  • Advanced glazing systems with excellent heat transmission values (Ug-Value) have been developed to reduce the energy consumption and the greenhouse gas emission. This study proposes a triple glazing system consisting of gaps with a vacuum and a carbon dioxide gas layer which is one of greenhouse gases. As a fundamental stage, this study is focused on calculating the optimal glazing thickness and the Ug-Value via a computer simulation, Therm & Window package. As the results, it was presented that the optimal thickness of the proposed triple glazing system is 22.2 mm, and the Ug-Value is 0.273 W/㎡·K. If this glazing system is to be applied to buildings, it could not only reduce building energy consumption but could also contribute to the treatment of carbon dioxide gas which is one of greenhouse gases.

승용 및 하이브리드 자동차 온실가스 배출특성 연구 (A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles)

  • 임윤성;문선희;정택호;이종태;동종인
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

2006 IPCC 지침을 적용한 농경지 온실가스 배출량 분석 (The Analysis of Greenhouse Gases Emission of Cropland Sector Applying the 2006 IPCC Guideline)

  • 박성진;이창훈;김명숙
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.445-452
    • /
    • 2018
  • The field of agriculture, forestry, and other land-use (AFOLU) is concerned with greenhouse emissions of agriculture (crop and livestock), as is the field of land-use, land-use change, and forestry (LULUCF). The 1996 IPCC guideline and the 2006 IPCC guideline are used in combination for calculation of greenhouse gas emission from the agricultural sector, and the 2003 IPCC guideline is used for that from the land-use sector. In this research, we analyzed GHG emissions of the cropland sector in AFOLU based on the 2006 IPCC guideline. The results showed that GHG emissions of 1990 was $-504Gg{\cdot}CO_2-eq$, while that of the last year was $2,871Gg{\cdot}CO_2-eq$. Compared with the 2003 methodology, total emissions according to the 2006 IPCC was lower except in 1997 and 2003. This trend is due to difference of analyzed emission sources, lower default values, and global warming potential by the 2006 IPCC. The results are estimated using limited data at the Tier 1 level and the first issue to be solved is the activity data from the land-use change matrix. Although this result should be improved, it can be used as the basis for calculating GHG emissions of the AFOLU sector.

가솔린 차량의 누적주행거리에 따른 온실가스 배출특성 연구 (A Study on the Emission Characteristics of Greenhouse Gas by Cumulative Mileage of Gasoline Vehicle)

  • 박진성;임재혁;김기호;이정민
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.227-233
    • /
    • 2018
  • An automobile is composed of a combination of a lot of parts, and it is difficult to maintain the same performance from a new car until it's scrapped. Greenhouse gases included in automobile emissions are typically carbon dioxide and methane. It is expected that this greenhouse gas will change depending on the aging (cumulative mileage) of the automobile However, the greenhouse gas characteristics by cumulative mileage lack of actual data due to time and economic difficulties. Therefore, in this paper, we selected automobile with high sales by displacement in korea and carbon dioxide and methane were measured by using method of the related law. The cumulative mileage is as follows; within 160 km (Statutory mileage by 2010), 6500 km (current statutory mileage), 15000 km (approximately 1-year average mileage of Non-business passenger vehicle). As a result of the test, the emission of carbon dioxide and methane was the smallest at 6,500 km, and increased in order of 15000 km, within 160 km. Also, it was confirmed that the $CO_2$ emission change of a large displacement automobile is more smaller at each mileage. Although the greenhouse gas tends to increase as the mileage of the vehicle, it is thought that additional confirmation is required of since 15,000 km as well, because it can occur deviations due to taming process or mechanical friction of the automobile.

국내 무연탄 화력발전소의 온실가스 배출계수 개발 - CH4, N2O를 중심으로 - (Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea)

  • 이시형;김진수;이성호;사재환;김기현;전의찬
    • 한국대기환경학회지
    • /
    • 제25권6호
    • /
    • pp.562-570
    • /
    • 2009
  • Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-$CO_2$ greenhouse gas $CH_4$ and $N_2O$ are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-$CO_2$ emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of $CH_4$ and $N_2O$ computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the $CH_4$ emission factor in this study was about 25% lower, while that of $N_2O$ was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.

Environmental awareness and economical profits of replacing gas turbines in gas compressor stations: A case study of Polkalleh station in Iran

  • Sadrnejad, Amin;Noorollahi, Younes;Sadrnejad, Tohid
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.132-139
    • /
    • 2016
  • In early 90s the worldwide awareness about the energy crisis and global warming had been increased and emission reduction (by improving energy efficiency), as well as increasing the capacity of clean and renewable energies, showed themselves as the most important steps towards the sustainable development approach. However, investigations on Iran's environmental situation show huge decline in recent decades and apparently there is no sense of urgency about these issues through the vision of Iranian politicians. In this article the idea of replacing the old gas turbines of Polkalleh natural gas compressor station - as one of the main compressor stations of Iran - with newer and more efficient gas turbines is evaluated, emphatically for reducing greenhouse gases emissions and their environmental costs and decreasing natural gas consumption as well. Clearly such idea is costly, but analyzing its economic impacts, huge declines in annual costs and greenhouse gases emissions can be seen as well. So an investment about $95 million can decrease 40% of Polkalleh compressor station annual costs, 25% of natural consumption and 30% of $CO_2$ and $NO_x$ emissions. Besides the simple payback period of this investment is about 2.5 years from the cut-expenses of annual costs.