• Title/Summary/Keyword: Greenhouse gas (GHG) emissions

Search Result 276, Processing Time 0.023 seconds

A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University (대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석)

  • Jung, Jae-Hyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.

Estimation of greenhouse gas emissions: An alternative approach to waste management for reducing the environmental impacts in Myanmar

  • Tun, Maw Maw;Juchelkova, Dagmar
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.618-629
    • /
    • 2019
  • Along with growing population and economic development, increasing waste generation rates in developing countries have become a major issue related to the negative impacts of waste management on the environment. Currently, the business-as-usual waste management practices in Myanmar are largely affecting the environment and public health. Therefore, this study developed an alternative approach to waste management for reducing the environmental impacts in Myanmar by highlighting the greenhouse gas (GHG) emissions from business-as-usual practices and three proposed scenarios during 2018-2025. The calculation methods of the Intergovernmental Panel on Climate Change and Institute for Global Environmental Strategies were used for estimating the GHG emissions from waste management. It was estimated that the current waste management sector generated approximately 2,000 gigagrams of CO2-eq per year in 2018, trending around 3,350 Gg of CO2-eq per year in 2025. It was also observed that out of the proposed scenarios, Scenario-2 significantly minimized the environmental impacts, with the lowest GHG emissions and highest waste resource recovery. Moreover, the GHG emissions from business-as-usual practices could be reduced by 50% by this scenario during 2018-2025. The target of the similar scenario could be achieved if the local government could efficiently implement waste management in the future.

A quantitative analysis of greenhouse gases emissions from bottom pair trawl using a LCA method (전과정평가방법에 의한 쌍끌이 대형기선저인망의 온실가스 배출량 정량적 분석)

  • Yang, Yong-Su;Lee, Dong-Gil;Hwang, Bo-Kyu;Lee, Kyoung-Hoon;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.111-119
    • /
    • 2015
  • The negative factors of fishery in environmental aspect of view are Greenhouse gas emission problems by high usage of fossil fuel, destruction of underwater ecosystem by bottom trawls, reduction of resources by fishing and damage of ecosystem diversity. Especially, the Greenhouse gas emission from fisheries is an important issue due to Canc$\acute{u}$n meeting, Mexico in 1992 and Kyoto protocol in 2005. However, the investigation on the GHG emissions from Korean fisheries did not much carry out. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is needed as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from fishery. Here, we calculated the GHG emission from Korean bottom pair trawl fishery using the LCA (Life Cycle Assessment) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficient of the fishery is also calculated. The GHG emissions from the representative fishes caught by bottom pair trawl will be dealt with. Furthermore, the GHG emissions for the edible weight of fishes are calculated with consideration to the different consuming areas and slaughtering process also. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.

Estimating Transportation-Related Greenhouse Gas Emissions in the Port of Busan, S. Korea

  • Shin, Kang-Won;Cheong, Jang-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • The port of Busan is the fifth busiest container port in the world in terms of total mass of 20-foot equivalent units transported. Yet no attempts have been made to estimate the greenhouse gas (GHG) emissions from the port of Busan by accounting for all port-related activities of the various transportation modes. With these challenges in mind, this study estimates the first activity-based GHG emissions inventory in the port of Busan, which consists of four transportation modes: marine vessels, cargo-handling equipment, heavy-duty trucks, and railroad locomotives. The estimation results based on the most recent and complete port-related activity data are as follows. First, the average annual transportation GHG emission in the port of Busan during the analysis period from 2000 to 2007 was 802 Gg $CO_2$-eq, with a lower value of 773 Gg $CO_2$-eq and an upper value of 813 Gg $CO_2$-eq. Second, the increase in the transportation-related GHG emissions in the port of Busan during the analysis period can be systematically explained by the amount of cargo handled ($R^2$=0.98). Third, about 64% of total GHG emissions in the port of Busan were from marine vessels because more than 40% of all maritime containerized trade flows in the port were transshipment traffic. Fourth, approximately 22% of the total GHG emissions in the port of Busan were from on-road or railroad vehicles, which transport cargo to and from the port of Busan. Finally, the remaining 14% of total GHG emissions were from the cargo handling equipment, such as cranes, yard tractors, and reach stackers.

Development of Optimal Bus Dispatch Simulation for Greenhouse Gas Reduction

  • Jung, Sang Won;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2022
  • Global climate change caused by greenhouse gases(GHG) is getting serious. To prevent this, countries around the world are regulating GHG emissions. Korea has decided to reduce GHG emissions by 37% compared to BAU (Business As Usual) by 2030. The transportation sector accounted for 18.58% of the domestic GHG emission, and roads accounted for 93.75% of the total. Public transportation is also included in the target of GHG reduction, and this study was conducted to reduce GHG emissions of bus public transportation, which can reduce GHG emissions while reducing the cost of road transportation. In this study, a simulation was conducted to predict the optimal GHG emission compared to the waiting time of passengers by adjusting the bus dispatch interval by implementing a greenhouse gas simulation model using Any Logic. If a more precise model is implemented in the future, it is expected that it will be used to reduce bus GHG emissions.

Forecast of Greenhouse Gas Emission by Policy of Waste Management in Korea (폐기물관리 정책변화에 따른 온실가스 배출량 예측)

  • Kim, Hyun-Sun;Kim, Dong-Sik;Yi, Seung-Muk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.343-350
    • /
    • 2008
  • Quantifying greenhouse gas (GHG) emissions in the waste sector is important to evaluating measures for reduction of GHG emissions. To forecast GHG emissions and identify potential emission reduction for GHG emissions, scenarios applied with environmental policy such as waste reduction and structural change of waste treatment were developed. Scenario I estimated GHG emissions under the business as usual (BAU) baseline. Scenario II estimated GHG emissions with the application of the waste reduction policy while scenario III was based on the policy of structural change of waste treatment. Scenario IV was based on both the policies of waste reduction and structural change of waste treatment. As for the different scenarios, GHG emissions were highest under scenarios III, followed by scenarios IV, I, and II. In particular, GHG emissions increased under scenario III due to the increased GHG emissions from the enhanced waste incineration due to the structural change of waste treatment. This result indicated that the waste reduction is the primary policy for GHG reduction from waste. GHG emission from landfill was higher compared to those from incineration. However, the contribution of GHG emission from incineration increased under scenario III and IV. This indicated that more attention should be paid to the waste treatment for incineration to reduce GHG emissions.

Life cycle greenhouse-gas emissions from urban area with low impact development (LID)

  • Kim, Dongwook;Park, Taehyung;Hyun, Kyounghak;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • In this study, a comprehensive model developed to estimate greenhouse gas (GHG) emissions from urban area with low impact development (LID) and its integrated management practices (IMPs). The model was applied to the actual urban area in Asan Tangjeong district (ATD) as a case study. A rainwater tank (1200 ton) among various LID IMPs generated the highest amount of GHG emissions ($3.77{\times}10^5kgCO_2eq$) and led to the utmost reducing effect ($1.49{\times}10^3kgCO_2eq/year$). In the urban area with LID IMPs, annually $1.95{\times}104kgCO_2eq$ of avoided GHG emissions were generated by a reducing effect (e.g., tap water substitution and vegetation $CO_2$ absorption) for a payback period of 162 years. A sensitivity analysis was carried out to quantitatively evaluate the significance of the factors on the overall GHG emissions in ATD, and suggested to plant alternative vegetation on LID IMPs.

THE SCENARIOS OF GREENHOUSE GAS REDUCTION ON SEOUL NATIONAL UNIVERSITY

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Kwon-Sik Song
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.213-218
    • /
    • 2013
  • To respond to global warming and climate change, Korean Government has implemented the GHG Target Management, which leads to a voluntary reduction in greenhouse gases from large businesses. Korean universities have put efforts on reducing GHG emissions and energy consumptions in the campuses, however, because of various activities and its characteristic of non-profit organization, establishing a long-term plan for reducing greenhouse gases is necessary. In this research, the Seoul National University's energy usage is analyzed and applicable technologies for reducing GHG emissions are extracted. Hence, three scenarios for performing the GHG Target Management are established. Proposed scenario is available for GHG Target Management and it would be expected to support decision- makings for reducing GHG emissions.

  • PDF

Study on the Measurement of GHG Emissions and Error Analysis in Form the MSW Incineration Plant Equipment with the Recovery Heat System (2009~2013) (폐열회수시설이 설비된 생활폐기물 소각자원화시설 온실가스 배출량 산정 시 오차분석 (2009~2013))

  • Choi, Won-Geun;Seo, Ran-Sug;Park, Seung-Chul
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • This study aims to analyze region-specific trends in changing greenhouse gas emissions in incineration plants of local government where waste heat generated during incineration are reused for the recent five years (2009 to 2013). The greenhouse gas generated from the incineration plants is largely $CO_2$ with a small amount of $CH_4$ and $N_2O$. Most of the incineration plants operated by local government produce steam with waste heat generated from incineration to produce electricity or reuse it for hot water/heating and resident convenience. And steam in some industrial complexes is supplied to companies who require it for obtaining resources for local government or incineration plants. All incineration plants, research targets of this study, are using LNG or diesel fuel as auxiliary fuel for incinerating wastes and some of the facilities are using LFG(Landfill Gas). The calculation of greenhouse gas generated during waste incineration was according to the Local Government's Greenhouse Emissions Calculation Guideline. As a result of calculation, the total amount of greenhouse gas released from all incineration plants for five years was about $3,174,000tCO_2eq$. To look at it by year, the biggest amount was about $877,000tCO_2eq$ in 2013. To look at it by region, Gyeonggido showed the biggest amount (about $163,000tCO_2eq$ annually) and the greenhouse gas emissions per capita was the highest in Ulsan Metropolitan City(about $154kCO_2eq$ annually). As a result of greenhouse gas emissions calculation, some incineration plants showed more emissions by heat recovery than by incineration, which rather reduced the total amount of greenhouse gas emissions. For more accurate calculation of greenhouse gas emissions in the future, input data management system needs to be improved.

Statistical Model Analysis of Urban Spatial Structures and Greenhouse Gas (GHG) - Air Pollution (AP) Integrated Emissions in Seoul (서울시 도시공간구조와 온실가스-대기오염 통합 배출량의 통계모형분석)

  • Jung, Jaehyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.303-316
    • /
    • 2015
  • The relationship between urban spatial structures and GHG-AP integrated emissions was investigated by statistically analyzing those from 25 administrative districts of Seoul. Urban spatial structures, of which data were obtained from Seoul statistics yearbook, were classified into five categories of city development, residence, environment, traffic and economy. They were further classified into 10 components of local area, population, number of households, residential area, forest area, park area, registered vehicles, road area, number of businesses and total local taxes. GHG-AP integrated emissions were estimated based on IPCC(intergovernmental panel on climate change) 2006 guidelines, guideline for government greenhouse inventories, EPA AP-42(compilation of air pollutant emission factors) and preliminary studies. The result of statistical analysis indicated that GHG-AP integrated emissions were significantly correlated with urban spatial structures. The correlation analysis results showed that registered vehicles for GHG (r=0.803, p<0.01), forest area for AP (r=0.996, p<0.01), and park area for AP (r=0.889, p<0.01) were highly significant. From the factor analysis, three groups such as city and traffic categories, economy category and environment category were identified to be the governing factors controlling GHG-AP emissions. The multiple regression analysis also represented that the most influencing factors on GHG-AP emissions were categories of traffic and environment. 25 administrative districts of Seoul were clustered into six groups, of which each has similar characteristics of urban spatial structures and GHG-AP integrated emissions.