• Title/Summary/Keyword: Greenhouse climate

Search Result 832, Processing Time 0.034 seconds

Takagi-Sugeno Fuzzy Model for Greenhouse Climate

  • Imen Haj Hamad;Amine Chouchaine;Hajer Bouzaouache
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.24-30
    • /
    • 2024
  • This paper investigates the identification and modeling of a climate greenhouse. Given real climate data from greenhouse installed in the LAPER laboratory in Tunisia, the objective of this paper is to propose a solution of the problem of nonlinear time variant inputs and outputs of greenhouse internal climate. Based on fuzzy logic technique combined with least mean squares (lms) a robust greenhouse climate model for internal temperature prediction is proposed. The simulation results are presented to demonstrate the effectiveness of the identification approach and the power of the implemented Takagi-Sugeno Fuzzy model based Algorithm.

DNDC Modeling for Greenhouse Gases Emission in Rice Paddy of South Korea and the Effect of Flooding Management Change and RCP 8.5 Scenario (RCP 8.5 시나리오와 관수 기법의 변화에 따른 논에서의 온실가스 배출 변화의 DNDC 모델을 통한 모의)

  • Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu;Hwang, Wonjae
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.189-198
    • /
    • 2018
  • In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.

Agriculture Under UNFCCC and Its Policy Implications (유엔기후변화협약의 농업부문 동향과 시사점)

  • Myeong, Soojeong
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.313-321
    • /
    • 2014
  • Agriculture is a vulnerable sector to climate change because it is a primary industry directly exposed to climate. At the same time, it is a sector emitting greenhouse gases during agricultural activities, thereby affecting climate change. However, agriculture is a nascent subject under the UNFCCC. The agriculture sector needs both adaptation and mitigation. Currently, co-benefit of adaptation and mitigation is emphasized during climate change negotiation. Developing country parties are in a position to focus on adaptation rather than mitigation. As a result, mitigation is not being addressed enough during climate negotiation. Agriculture has been addressed through Nairobi Work Programme and NAPA. Since current efforts for greenhouse gas reduction are not sufficient for stabilizing the atmospheric system of the Earth to prevent climate change, the agriculture sector should also be considered for greenhouse gas reduction. For this, MRV for small farmers in developing countries and incentives for their mitigation efforts should be developed in agriculture sector. In addition, it is necessary to strengthen international cooperation for developing capacities for vulnerable countries and people to climate change.

The Impact of Climate Change on Fire

  • Eun-Hee JEON;Eun-Gu, HAM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.4
    • /
    • pp.15-20
    • /
    • 2024
  • Purpose: Climate change is greatly affecting the frequency and intensity of fires around the world. The main effects of climate change on fires are rising temperatures, dry seasons and extreme droughts, changes in precipitation, increased strong winds, extended fire danger periods, and changes in natural ecosystems. Several factors due to climate change are increasing the risk of large-scale fires, such as wildfires. Research design, data and methodology: Rising temperatures caused by climate change will make forests and grasslands drier, make it easier for wildfires to occur in drier environments and spread quickly to wider areas, and the generated wildfires will release large amounts of greenhouse gases into the atmosphere, such as carbon dioxide (CO2), and the released greenhouse gases will strengthen the global greenhouse effect, further raising the temperature. As temperatures rise, the risk of wildfires increases in drier environments, and this process is repeated, leading to a vicious cycle of intensifying climate change as more fires occur and more greenhouse gases are released. Results: In conclusion, climate change is increasing the risk of fire occurrence and this phenomenon is expected to become more frequent and severe in the future. Conclusions: In order to cope with the increasing fire risk caused by climate change, fire prevention and management. Fire detection and response systems need to be strengthened, supportive policies and international cooperation are needed to restore ecosystems, and these measures, along with fire prevention, management and countermeasures, should take into account long-term climate change and adaptation as well as short-term responses.

Development of Greenhouse Gas Emission Factors from Sewage Sludge Incinerator (하수슬러지 소각장의 온실가스 배출계수 개발)

  • Kim, Seungjin;Kang, Seongmin;Kang, Soyoung;Lee, Jeongwoo;Sa, Jae-Hwan;Park, Seong-Jin;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.209-218
    • /
    • 2014
  • In this study, the researchers have developed the greenhouse gas emission coefficients targeted at sewage sludge incineration plants that treat sewage sludge by incineration. Among the gases emitted from the sewage sludge incineration plants, the greenhouse gases showed concentrations of 6.84% for $CO_2$, 4.51 ppm for $CH_4$, and 86.34 ppm for $N_2O$; calculated into greenhouse gas emission coefficients, these gave $276.06kg\;CO_2/ton$, $0.0066kg\;CH_4/ton$, and $0.35kg\;N_2O/ton$. As the result of calculating the greenhouse gas emission quantity in sewage sludge incineration plants using the greenhouse gas emission coefficients, the gross greenhouse gas emission was $84.63ton\;CO_2\;eq./day$, and the net emission was $23.90ton\;CO_2\;eq./day$; this was $37.52ton\;CO_2\;eq./day$ less than the net greenhouse gas emission that was calculated using the standard values of IPCC, which was $61.42ton\;CO_2\;eq./day$. This difference is probably because unlike the standard values of IPCC, the greenhouse gas emission coefficients of this study reflected the special properties of subject facilities. Thus, it is thought that emission coefficient research on the facilities that deviated from the standard values of IPCC should continue to achieve the development of national greenhouse gas coefficient that reflects the special properties of Korea.

Review on Impacts and Possible Adaptation Strategies for Climate Change (기후변화 영향과 향후 적응대책방향에 대한 소고)

  • Choi, Kwang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.3
    • /
    • pp.201-211
    • /
    • 2008
  • According to IPCC fourth assessment report in 2007, global mean temperatures have risen by 0.74 degrees Celsius over the past 100 years. Moreover, in the recent 25 years, global mean temperatures have risen by 0.45 degrees Celsius, which is 2.4-times larger than those in the past 100 years. The evidences for climate change, such as sea level rise, arctic glacier melt, and desertification in Asia, have occurred and increased over the globe. In Korea, because regional climate has been changed, types of agriculture and fishery should be replaced. And as precipitation pattern behave differently from the past decades, water management would be more difficult, furthermore, atmospheric environment, related to concentrations for ozone, sulfate, etc., could be worse. Nevertheless, we have only focused on greenhouse gas reduction duty for the Convention of Climate Change. Fortunately, in the fourth plan on climate change, we have planned to manage climate change more actively since 2007. In Korea, the emission of carbon dioxide has increased about 1.9-times more, from 311million ton in 1990 to 591million ton in 2004. And also about 2 ppm rise every year for concentrations of carbon dioxide in the atmosphere. As a result, ecosystem, quality of water and atmosphere would be affected. Here, the emission of greenhouse gases over the globe is examined, and the effect of greenhouse gases for climate change is reviewed from the results of previous studies. In addition, the countermeasures of mitigation and adaptation on climate change were discussed for the understanding.

Characteristics of GHG emission according to socio-economic by the type of local governments, REPUBLIC OF KOREA (지자체 유형별 사회경제적 특성에 따른 온실가스 배출특성 분석)

  • Park, Chan;Kim, Dai-Gon;Seong, Mi-Ae;Seo, Jeonghyeon;Seol, Sunghee;Hong, You-Deog;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.3
    • /
    • pp.195-201
    • /
    • 2013
  • Local governments are establishing their own greenhouse gas reduction goal and are playing a important role to respond to climatic changes. However, there are difficulties in quantitative analyses such as estimation of future greenhouse gas emission and computation of reduction potential, which are procedures required to establish mid to long term strategies to realize of low carbon society by each local governments. Also, reduction measures must reflect characteristics of each local government, since the reduction power of each local government can differ according to characteristics of each. In order to establish strategies that reflect characteristics of local governments, types of greenhouse gas emission from cities were classified largely into residential city, commercial city, residential commercial city, agriculture and fishery city, convergence city, and industrial city. As a result of analyzing basic unit of greenhouse gas emission by local government during 2007 in terms of per population, household and GRDP based on the type classification, significant results were deduced for each type. To manage the amount of the national greenhouse gas, reduction measures should be focused on the local governments that emits more than the average of each type's GHG emission.

Assessment of Korea's GHG Reduction Targets through Comparative Analysis of OECD Countries' Nationally Determined Contributions (NDCs) (OECD 국가의 온실가스 감축공약(NDC)의 비교 분석을 통한 우리나라 온실가스 감축 목표 평가)

  • Lee, Manhee;Park, Sun-Kyoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.313-327
    • /
    • 2017
  • Korea has introduced Korea Emissions In 2015, the United Nations Conference on Climate Change (COP21) was held in Paris. The Paris Agreement indicates that all nations are in charge of mitigating climate change. Prior to COP21, 197 Parties submitted the Nationally Determined Contributions (NDCs), which are greenhouse gas reduction targets. On June 30, 2015, Korea also submitted an NDC target of 37% reduction compared to BAU in 2030. However, Korea's NDC was evaluated as "Inadequate" by the Climate Action Tracker (CAT). In addition, the domestic environmental group expressed a negative opinion as well. In view of this situation, it is necessary to conduct an objective assessment of quantitative analysis of NDC goals in Korea. The goal of this study is to evaluate NDC of Korea by comparing with those of OECD member countries. For comparative analysis, data such as population, GDP, primary energy supply affecting GHG emissions were obtained from the OECD homepage. The results indicate that emission reduction goal of 37% of Korea was $4^{th}$ highest goal among OECD member countries. If Korea achieves the emission reduction goal, the greenhouse gas emissions per capita in 2030 are $10^{th}$among OECD member countries. The greenhouse gas emissions per GDP are $13^{th}$, and emissions per TOE are $9^{th}$ among OECD member countries. The results show that greenhouse gas intensity of Korea is relatively high among OECD member countries. Therefore, it is needed to continuously endeavor to reduce greenhouse gas emissions to mitigate the global climate change. This study can be further used as a fundamental document to establish the future greenhouse reduction policy in Korea.

Characterization of Greenhouse Gas by Emission Regions and Sectors using GHG-CAPSS(2006) (GHG-CAPSS를 이용한 지역별, 부문별 온실가스 배출 특성 분석(2006))

  • Lee, Sue-Been;Lim, Jae-Hyun;Lyu, Young-Sook;Yeo, So-Young;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2011
  • While increased use of energy and fossil fuel in the recent years could worsen air quality and climate change, only few studies have been conducted on estimation of greenhouse gas emissions and characterization of emission types by sectors and regions in Korea. In this study, greenhouse gases emissions based on resions(Si, Gun, Gu) and emitted sectors(industry, transport, cemmercial and institutional, residential, waste, agriculture, others) were investigated using GHG-CAPSS(Greenhouse GasClean Air Policy Support System) developed to support to national and regional greenhouse gases reduction strategies. GHG-CAPSS follows IPCC(Intergovernmental Panel on Climate Change) Guideline methodology to categorize the emission sources and estimation of greenhouse gases using bottom-up approach. Estimated total greenhouse gases emissions were 588,011 thousand tons as $CO_2$ equivalent. Industry(50.1%) sector exhibited the highest portion followed by transport(17.6%), commercial and institutional(12.6%), residential(12.6%), waste(2.6%), agriculture(2.5%). Based on regional estimation, Gyeonggi(14.9%) demonstrated the highest emitted greenhouse gases among big cities followed by Jeonnam(12.4%), Gyeongbuk(11.0%), Ulsan(9.2%) and Seoul(8.9%).

Effect on the Heat of Reaction to Temperature and Absorption Capacity in the Reaction of Cyclic Amines with Carbon Dioxide (고리형 아민과 이산화탄소의 반응에서 온도와 흡수능이 반응열에 미치는 영향)

  • CHOI, JEONG HO;JANG, JONG TACK;YUN, SOUNG HEE;JO, WON HEE;JUNG, JIN YOUNG;YOON, YEO IL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.530-537
    • /
    • 2018
  • The effect of temperature and absorption capacity on heat of reaction, which is one of the characteristic studies of $CO_2$ absorption, were investigated in a differential reaction calorimeter (DRC) by using piperazine (PZ) and 2-methylpiperazine (2-MPZ). For all absorbents, $CO_2$ loading capacity decreased with increasing the temperature, while the heat of reaction increased, it figured out that these had a linear correlation between $CO_2$ loading capacity and/or heat of reaction and the temperature. The heat of reaction of all absorbents increased with increasing $CO_2$ loading capacity, especially 2-MPZ rapidly increased at $70^{\circ}C$. The reason for increase in the heat of reaction was occurred the regeneration of $CO_2$, which is a reverse-reaction, simultaneously with the absorption.