• Title/Summary/Keyword: Greenhouse Management

Search Result 656, Processing Time 0.028 seconds

Evapotranspirations of Lettuce and Cucumber by Cropping Systems in Greenhouse (시설재배 상추 및 오이의 재배방식별 증발산량)

  • 남상운;이남호;전우정;황한철;홍성구;허연정
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.168-175
    • /
    • 1997
  • In greenhouse, data on evapotranspiration or water consumption is important for the rational water management, irrigation planning, thermal environment analysis, and watering automation. But little investigations have been attempted to make clear the characteristics of water consumption in greenhouse. In this paper, evapotransplrations of lettuce and cucumber by cropping systems were investigated. And the correlations among evapotranspiration, pan evaporation, solar radiation, mean air temperature, and minimum relative humidity were analyzed. Experimental cropping systems of lettuce were soil culture and NFT system. Those of cucumber were soil culture, perlite culture, and rockwool culture. Total water consumption of lettuce was 2.62$\ell$/plant in soil culture and 1.71$\ell$/plant in NFT system. That of cucumber was 45.22$\ell$/plant in soil culture, 27.45$\ell$/plant in rockwool culture and 29.06$\ell$/plant in perlite culture. Therefore total water consumption of soil culture showed higher than soilless culture.

  • PDF

Effect of Additional Early-Morning Heating Periods on the Growth and Yield of Cucumber and Heating Load (조조가온기간이 시설재배 오이의 생육과 수량 및 난방부하에 미치는 영향)

  • Kwon Joon Kook;Kang Nam Jun;Lee Jae Han;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • To investigate the effect of early-morning heating periods on growth and yield of cucumber and heating load in a greenhouse cultivation, three additional heating periods (0, 1 and 2 hours) were compared to rise temperature from $12^{\circ}C\;to\;16^{\circ}C$ in the early-morning. Leaf temperature just before opening the thermal screen was $3.3^{\circ}C\;and\;4.1^{\circ}C$ higher in the 1 and 2 hour heating compared to that in the control (0 hour heating), respectively. Photosynthetic rate, conductance to $H_2O$ and transpiration rate of cucumber leaves were the highest in the 2 hour heating, and the lowest in the control. However. the difference between the 1 hour and 2 hour heating was not significant. Inorganic element content in cucumber leaves was not significant among the treatments of duration. Initial growth after planting of cucumber was greater in the 1 and 2 hour heating than that in the control. Yield increased by $11\%\;and\;15\%$ in the 1 hour and 2 hour heating compared to that in the control. respectively. Fuel consumption for heating increased by $12\%\;and\;22\%$ in the 1 hour and 2 hour heating compared to that in the control, respectively. Considering in the yield and fuel consumption for heating. 1 or 2 hours of early morning heating could be effective in temperature management for cucumber in a greenhouse cultivation.

Estimating Greenhouse Gas Emissions from Marine Vessels in the Port of Busan using PORT-MIS and Vessel Specification Databases (PORT-MIS 및 선박제원 DB를 이용한 부산항 입출항 선박의 온실가스 배출량 산정)

  • Kim, Jongjin;Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1251-1259
    • /
    • 2014
  • This study presents the linkage method combining the existing Port Management Information System (PORT-MIS) DB with the scattered vessel activity data sets including the hotelling and maneuvering characteristics and specification information of the vessels arriving and departing from the port of Busan from January 2009 to June 2010. By linking the data sets, this study made three types of vessel activity databases: L-PORT-MIS DB with low-level vessel activities, M-PORT-MIS DB with medium-level vessel activities such as hotelling time, H-PORT-MIS DB with high-level vessel activities such as hotelling time, engine power, etc. The greenhouse gas (GHG) emissions estimation results show that total GHG emissions decreases when the detailed vessel activities are employed. This decrease in the total GHG emissions by the level of vessel activities implies that the GHG emissions from the low and medium level vessel activities are overestimated due to the aggregated hotelling/maneuvering times and speeds resulting from the past vessel specifications. Therefore, the GHG emissions using the H-PORT-MIS DB are more reliable GHG emission estimates in that the vessel specifications and the observed hotelling time of each vessel are employed in the estimation process. Hence, the high-level vessel activity dataset should be constructed to implement more suitable countermeasures for reducing the GHG emissions in the port of Busan.

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season (차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리)

  • Kim, Sung Eun;Lee, Jae Eun;Lee, Sang Don;Kim, Hak Sun;Chun, Hee;Jeong, Woo Ri;Lee, Moon Haeng;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.

Evaluation of Mobile Emissions Reduction Strategies Using Travel Demand Model and Analytic Hierarchy Process (교통수요모형과 의사결정모형을 이용한 자동차 배출저감정책 평가)

  • Lee, Kyu Jin;Park, Kwan Hwee;Shim, Sang Woo;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1123-1133
    • /
    • 2015
  • This study proposed an evaluation method of mobile emissions reduction strategies for air quality management. The proposed method was considered Travel Demand Model (TDM) and Analytic Hierarchy Process (AHP), while an existing method was focused on quantitative factors. AHP of the evaluation indices of mobile emissions reduction strategies show that quantitative evaluation indices such as air pollutants and greenhouse gas reduction are more important than the political evaluation indices (Consistency with an upper plan, Policy applicability, Technical applicability and feasibility) and each weight of air pollutants and greenhouse gas reduction are found to be 0.373 and 0.218. The early scrapping policy of decrepit diesel vehicle is the best policy in the proposal method using TDM and AHP but this result differs from evaluated result by TDM or AHP respectively. These results are limited to the basic assumption and range of reduction scenarios but are expected to contribute to establish more reasonable and effective mobile emission reduction strategies.

Calculation of Greenhouse Gas and Air Pollutant Emission on Inter-regional Road Network Using ITS Information (지능형교통체계(ITS) 정보를 이용한 지역 간 도로의 온실가스 및 대기오염물질 배출량 산정)

  • Wu, Seung Kook;Kim, Youngkook;Park, Sangjo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2013
  • Conventionally, greenhouse gas (GHG) emissions in the transport sector have been estimated using the fuel consumption (i.e. Tier 1 method). However, the GHG emissions on road networks may not be practically estimated using the Tier 1 method because it is not practical to monitor fuel consumption on a road segment. Further, air pollutant emissions on a road may not be estimated efficiently by the Tier 1 method either due to the diverse characteristics of vehicles, such as travel speed, vehicle type, model year, fuel type, etc. Given these conditions, the goal of this study is to propose a Tier 3 level methodology to calculate $CO_2$ and $NO_X$ emissions on inter-regional roads using the information from ITS infrastructure. The methodology may avoid the under-estimation issue caused by the concavity of emission factor curves because the ITS speed or volume information is aggregated by a short time interval. The proposed methodology was applied to 4 road segments as a case study. The results show that the management of heavy vehicles' speed is important to control the $CO_2$ and $NO_X$ emissions on road networks.

Management of Greenhouse Whitefly, $Trialeurodes$ $Vaporariorum$ (Homoptera : Aleyrodidae) with Zoophytophagous Predator $Nesidiocoris$ $tenuis$ (Heteroptera : Miridae) and EFAM in Tomato Production without Pesticides (무농약 토마토재배에서 친환경자재와 담배장님노린재를 이용한 온실가루이 방제)

  • Kim, Do-Ik;Ko, Sug-Ju;Choi, Duck-Soo;Kang, Beom-Ryong;Kim, Seon-Gon;Choi, Kyeong-Ju;Kim, Sang-Soo;Hwang, In-Cheon
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Greenhouse whitefly, $Trialeurodes$ $Vaporariorum$, is the most important insect pest in environmental friendly tomato production. Natural enemies, $Nesidiocoris$ $tenuis$ and environmental friendly agricultural materials (EFAM) are major control agents in Korea. The aim of the present work is to evaluate release time of $N.$ $tenuis$ in controlling of $T.$ $vaporariorum$ and to select environmental friendly agricultural materials (EFAM) to suppress both $T.$ $vaporariorum$ and $N.$ $tenuis$ which if the density were high causing necrotic rings. Six EFAM selected to control of $Trialeurodes$ $Vaporariorum$ in three times spray with seven days intervals. Three EFAM showed high mortality 67.7-70.5% in spray after release plot but low in release after spray plot. It should be careful to spray with $N.$ $tenuis$. When $N.$ $tenuis$ were early release at 7 days after transplanting which before occurring and establishment of greenhouse whitefly, it could suppress the density. Extracts of bead tree + matrin, matrin 1, Chrysanthemum showed high mortality on $T.$ $vaporariorum$ adults and $N.$ $tenuis$. The results suggested that this three EFAM could be control agents of the damage of necrotic rings from $N.$ $tenuis$.

Analysis of Potential Greenhouse Gas Mitigation in Pohang Steel Industrial Complex (포항철강산업단지의 온실가스 잠재 감축량 분석)

  • Lee, Gwang Goo
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.439-448
    • /
    • 2014
  • The potential mitigation of greenhouse gas (GHG) is studied in the Pohang steel industrial complex (PHSIC). The total GHG emission in 2010 is estimated to be in the range from 4,174,000 to 4,574,000 $tCO_2-eq$ in PHSIC. To meet the target proposed by the government, it is needed to reduce 552,000 $tCO_2-eq$ at minium by 2020. To estimate the potential amount of GHG reduction, the technologies used in the voluntary carbon reduction projects are applied to 51 companies which are subject to GHG target management. From the viewpoint of technological availability and payback period, the fuel conversion and waste heat recovery have an advantage in the short term with a possibility to reduce 160,000 $tCO_2-eq$. In the mid term, the thermal technologies in steel and iron industry have the potential to cut 229,000 $tCO_2-eq$, while the electrical technologies have the potential of 125,000 $tCO_2-eq$ reduction. The gap between the target GHG mitigation and potential reduction using the short and mid term technologies is about 38,000 $tCO_2-eq$, which should be compensated by the fundamental process innovation and the implementation of the most cutting-edge technologies including renewable energy.

Analysis of Energy Consumption Pattern and Greenhouse Gas Emission in the Academic Facility (대학에서의 에너지 소비패턴 및 온실가스 배출현황 분석)

  • Kim, Jin-Sik;Lee, Kyoung-Bin;Lee, Im-Hack;Kim, Shin-Do
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.604-612
    • /
    • 2012
  • Self-management plan for GHG (Greenhouse Gas) reduction should be prepared in academic facilities, which occupy a large amount of energy consumption. In this study, a university was chosen as one of the major academic facilities and its energy consuming pattern and GHG emission were analyzed. The results have shown that annual $CO_2$ emission from university buildings was 10,452 ton-$CO_2$ (0.65 ton-$CO_2/m^2$), and dependent upon 78.0% electricity, 20.5% LNG and 1.5% oil, respectively as energy sources. According to more detail analysis by usage of energy consumption, appliances occupies 36.7% followed by gas heating (18.9%), lighting (18.6%), heating with electricity (12.5%), cooling with electricity (10.2%), transportation (1.5%), gas cooling (1.2%) and cooking (0.4%). Furthermore, annual $CO_2$ emissions per unit area and a student by electricity usage were evaluated to 51.30 kg-$CO_2/m^2$ and 981.86 kg-$CO_2$/capita, respectively and those by LNG usage were 14.61 kg-$CO_2/m^2$ and 241.01 kg-$CO_2$/capita.

Comparative Analysis on the Rail and Road Freight Transportation: Air contaminant and greenhouse gas emission (철도화물과 도로화물수송의 비교분석 연구: 대기오염물질 및 온실가스 배출)

  • Kim, Young-Joo;Park, Jaehyun;Oh, Yong-hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.94-101
    • /
    • 2016
  • With increasing global concerns for environmental impacts, efforts have been made to encourage a modal shift from road freight to an eco-friendly transport system such as rail freight. In Korea, the government has set master plans for a green transport system but has not taken any substantial action to promote rail freight transport. In developing policies and actions to promote rail freight, quantitative studies on environmental impacts among transportation means are essential. This study examined the air pollutant emissions and greenhouse gas (GHG) emissions per unit freight transported by road and rail, respectively. To improve the accuracy, we analyzed emission data and freight transport mileage of rail freight considering diesel locomotives and electric locomotives separately. The results show that unit air pollutant emissions (except SO2) from road freight are about 7~15 times more than those from rail freight. In addition, the GHG emission unit of road freight is about 4 times higher than that of rail freight.