• Title/Summary/Keyword: Greenhouse Management

Search Result 656, Processing Time 0.031 seconds

Estimation of Economics thorough Prediction of Methane Generation using IPCC Guideline from C Sanitary Landfill (IPCC가이드라인을 이용한 중소도시 C위생매립장의 메탄가스 발생량 예측을 통한 경제성 평가)

  • Lee, Sang-Woo;Park, Seo-Yun;Chang, In-Soo;Kang, Byung-Wook;Park, Sang-Chan;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.189.1-189.1
    • /
    • 2011
  • Global warming effect was intensified due to rapid growth of fossil fuel consumption caused by urbanization and industrialization. Various efforts was being done to solve the problems leading to anomaly climate such as flood, downpour, heavy snow. As a results of international efforts for management of global warming, Kyoto Protocol, which was passed in Kyoto, Japan in 1997, designated $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, $SF_6$ as a global warming gases. And IPCC(Intergovernmental Panel on Climate Change) suggested IPCC guideline for systematic establishment of national greenhouse gas inventory. Among five categories in IPCC guideline, the representative emission source of waste category is SWDS(solid waste disposal site). The concentrative research should progress for effective management of greenhouse gas related with waste. In this study, Tier1 and Tier2 methods which was suggested by 2006 IPCC(Intergovernmental Panel on Climate Change) guideline, was used to predict methane generation from C sanitary landfill located in Chungju area. To predict methane generation from C sanitary landfill, all factors were defaults values that were provided by 2006 IPCC guideline and Korea emission factors for Tier1 and Tier2 method. And economics of generated methane was estimated. From the predicted result using IPCC guideline, the methane generation was persistingly increased over a 9-year period(2000 ~ 2008). Aggregated amount of methane generation was about 3,017ton and 3,170ton predicted by Tier1 and Tier2, respectively. From the results of estimated economic value gained by generated methane from the C sanitary landfill for ten years from now(2010 ~ 2020), the profit was about 2.39 ~ 2.76 hundred million won.

  • PDF

Environmental Impact and Safe Vegetable Production of Korean Organic Farming only Appling Organic Fertilizer to Maintain/Increase Soil Fertility

  • Sohn, Sang-Mok;Kim, Young-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 1999
  • In order to get some basic data to check the environmental sound function against soil and water pollution and the safe vegetable production by korean organic farming where an internationally recognized basic concepts of soil fertility management for organic farming is not practiced and only applying the organic fertilizer to maintain the soil fertility, the chemical characteristics of soils and $NO_{3}^{-}$ content of chinese cabbage and lettuce cultivated by the conventional farming, greenhouse cultivation and organic farming were investigated. The highest value of $NO_{3}^{-}$-N in 0~30cm subsoil among the three different farming systems was found in the subsoil of organic farming and it was 3.6 and 6.6 times higher than those of conventional farming in chinese cabbage and lettuce respectively. $P_2O_5$ accumulation in the rhizosphere by organic farming also showed the highest value. The accumulation of $NO_{3}^{-}$-N and $P_2O_5$ in organic farming soil were similar or even more higher to those of greenhouse cultivation. The $NO_{3}^{-}$ accumulation in the vegetable by organic farming reached 3224ppm for chinese cabbage and 2543ppm for lettuce, and it were 4.7 and 6.4 times higher than those by conventional farming. It was concluded that there is urgently necessary to introduce the main concepts of soil fertility management of the Basic Standard of IFOAM, EU regulation and FAO/WHO Codex Alimentarius on organic agriculture(draft) into korean organic agriculture for the operation of environmental sound system and the production of sate vegetable in terms of $NO_{3}^{-}$ content.

  • PDF

A Study on Greenhouse Farmers' Willingness to Pay of Agricultural Water Supply through Pipeline (관수로 농업용수 공급에 대한 시설재배 농가의 비용 지불의사 연구)

  • Lim, Cheong-Ryong;Park, Seong-gyeong;Chung, Won-ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.2
    • /
    • pp.109-114
    • /
    • 2018
  • In this study, we estimate the greenhouse farmers' willingness to pay of agricultural water supply through pipeline. First, in the questionnaire design, orthogonal design and block design were used to enhance the ease of survey. Second, the theoretical model was constructed through the setting of the probability utility function, and the parameters were estimated by using the conditional logit model. Third, all of the estimation coefficients were statistically significant at the 1% significance level. The results of analysis are summarized as follows. First, the probability of selection is increased when maintenance is carried out by Korea Rural Community Corporation or local government. Second, the probability of selection is increased when agricultural water supply through pipeline is higher than the current level. Third, if the Korea Rural Community Corporation carries out maintenance management, the marginal willingness to pay is 44 won per ton. And if the local government carries out maintenance management, the marginal willingness to pay is 25 won per ton. Fourth, according to the quality level of agricultural water supply, the marginal willingness to pay is 101 won, 114 won and 120 won per ton, respectively. This study can be used as a basic data on the cost setting for agricultural water supply through pipeline.

Estimation and Mapping of Methane Emission from Rice Paddies in Gyunggi-do Using the Modified Water Management Scaling Factor (수정된 물관리보정인자를 적용한 경기도 논에서의 메탄 배출량 산정과 지도화)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Yeonuk;Kang, Minseok;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.320-326
    • /
    • 2016
  • From the perspective of climate-smart agriculture, it is becoming more critical to accurately estimate the amount of greenhouse gas emissions in the agricultural sector. In order to accurately ascertain the methane emissions from rice paddies, which account for a significant portion of the emission from the agricultural sector, we used the data from the 2010 Agriculture, Forestry and Fisheries Census, the revised water management scaling factors and their calculation program. In order to facilitate the analyses and understanding, the results were mapped using the ArcGIS software. The fact that the validation of the mapped values against the actual field measurements at one site showed little difference encourages the necessity to further this study. The administrative districts-based map of methane emission can help clearly identify the regional differences. Furthermore, the analysis of their major controlling factors will provide important scientific basis for the practical policy makings for methane mitigation.

Nitrogen Dioxide Emission from Livestock Manure Management (가축분뇨로부터 아산화질소 배출량 산출)

  • 전병수;정종원;김태일;유용희;최동윤;곽정훈;박치호;이현정
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • This study was conducted to calculate the amount of $N_2O$ emission from livestock manure management in Korea. $N_2O$ is considered a greenhouse gas emitted from livestock manure treatment. In order to calculate $N_2O$ emission, a percentage of nitrogen from livestock manure, livestock manure treatment facilities, and the number of livestock were collected. The amount of annual N excretion from beef cattle, dairy cattle, pigs, laying hen, and broiler were 37.00, 20.42, 12.37, 0.56, and 0.29kg, respectively Calculated $N_2O$ emission in 1990, 2005, 2010, 2015, and 2020 were 3.71, 5.84, 6.07, 6.23, and 6.53Gg, respectively. Increased $N_2O$ percentage in 2005, 2010, 2015, and 2020 compared to 1990 were 57.4, 63.6, 67.9, and 76.0%, respectively.

  • PDF

Development of Sustainable Food Waste Management for Reducing Greenhouse Gases Emissions in Korea (국내 음식물쓰레기 온실가스 저감을 위한 선순환체계 구축)

  • Lee, Saeromi;Park, Jae Roh;Ahn, Chang Hyuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.248-255
    • /
    • 2020
  • In this study, we analyze the current state of domestic food waste (FW) recycling and propose a management plan for greenhouse gas (GHG) emissions. First, the composting potential of the GW demonstrates considerable promise. In particular, the GW (phytoplankton, periphyton, macrophyte, etc.) as a third-generation biomass shows strong performance as a functional additive that mitigates the disadvantages associated with composting FW and improves the quality of the final composted product. Alternatively, the final product (e.g., soil ameliorant) can be used to produce bio-filters that are effective pollutant buffers, with high applicability for green infrastructure. The proposed ecological approaches create new opportunities for FW as a resource for the reduction of GHG emissions, and are expected to contribute to the establishment of effective net-zero carbon systems in the future.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

Studies on Management of Effective Temperature and Humidity in Greenhouse at Summer Season (하절기 효율적인 하우스 온도 습도 관리에 관한 연구)

  • 우영회;남윤일;송천호;김형준;김동억
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 1994
  • It is necessary to effective temperature and humidity management for normal growth of crops in protected cultivation during the summer season. Because the highest temperature of vinyl house inhibit normal growth of crop and decrease of crop production or marketability in summer season. Finally, the vinyl house was impossible some crop cultivation in summer season. This study was conducted to investigate effective and economic method for temperature drop in protected cultivation during the summer season. 1. In medium size vinyl house(5$\times$13$\times$3m), the effect of temperature drop appeared the highest in treatment of shading with aluminium thermal curtain+fog system+ventilation with fan. The effect of temperature drop was about 1$0^{\circ}C$ lower than outer air temperature and about 4$^{\circ}C$ lower than outer soil temperature. 2. The effect of temperature drop according to shading with aluminium thermal curtain+fog system+ventilation with fan during the highest temperature of summer season Jul., 20 to Aug., 21 was appeared about 8$^{\circ}C$ lower than outdoor above ground(1.2m) and about 7$^{\circ}C$ lower than outdoor surface ground. 3. The changes of solar radiation during a day according to shading with aluminium thermal curtain+ventilation with fan and shading with black curtain+ventilation with fan treatments was appeared respectively about 29.3%, 32.5% of outdoor solar radiation a fine day and respectively about 27.4%, 31.8% of outdoor solar radiation a cloudy day.

  • PDF

Distribution Patterns of Organophosphorous Insecticide Chlorpyrifos Absorbed from Soil into Cucumber (토양에 잔류된 살충제 Chlorpyrifos의 오이 흡수이행 및 분포 양상)

  • Hwang, Jeong-In;Jeon, Sang-Oh;Lee, Sang-Hyeob;Lee, Sung-Eun;Hur, Jang-Hyun;Kim, Kwon-Rae;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.148-155
    • /
    • 2014
  • The transfer pattern of chlorpyrifos present in soil to cucumber plants were assessed and reported with plant growth, concentration dependency, and duration. Cucumber seedlings cultivated in a growth chamber for 30 days and a greenhouse for 120 days. Weight and length of cucumbers cultivated in the chamber increased with the increasing time, while the uptake of chlorpyrifos by cucumber increased a period from 0 to 15 days and decreased after 15 days. Uptake rates of chlorpyrifos into a cucumber plant were 1.0~1.3% to initial amounts treated with 20 and 40 mg/kg to soil. Most chlorpyrifos residues were detected in root, followed by stem and leaf. Results of the greenhouse test showed that chlorpyrifos amounts in cucumber fruits were present less than LOQ (0.02 mg/kg), and chlorpyrifos was mainly found in the root of the cucumber plant. Chlorpyrifos absorbed in a cucumber under greenhouse condition was smaller than that in chamber condition as 0.03~0.04%. Degradation patterns of chlorpyrifos in soils were similar during indoor and outdoor tests with half-lives of 25.8~73.0 days. These results may be useful for establishing the management strategy of residual pesticides in soil environment.

Characterization of Entomopathogenic Fungus from Trialeurodes vaporariorum and Evaluation as Insecticide (온실가루이 병원성 곰팡이의 특성 및 살충제 개발을 위한 평가)

  • Yoon, Hwi Gun;Shin, Tae Young;Yu, Mi Ra;Lee, Won Woo;Ko, Seung Hyun;Bae, Sung Min;Choi, Jae Bang;Woo, Soo Dong
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.64-70
    • /
    • 2013
  • The greenhouse whitefly, Trialeurodes vaporariorum, is an economically important pest for greenhouse crops because they cause direct damage by feeding on plant nutrients and indirect damage as transmits many virus vectors. It has recently become a serious problem because of the continuous use of insecticide resulting in resistance among greenhouse whitefly population. To overcome these problems, in this study, the biological characteristics and virulence of an entomopathogenic fungus isolated from the cadaver of nymph greenhouse whitefly were investigated. Isolated fungus was identified as Isaria fumosorosea by morphological examinations and genetic identification using sequences of the ITS, ${\beta}$-tubulin, and EF1-${\alpha}$ regions. This fungus was named as I. fumosorosea SDTv and tested for the virulence against nymphs T. vaporariorum and the cold activity, the thermotolerance and the stability of UV-B irradiation on conidia. Mortality rate of greenhouse whitefly showed from 84 to 100% and the virulence increased with increasing conidial concentrations, $1{\times}10^5$ to $10^8$ conidia/ml. Conidia were stable at $35^{\circ}C$, 0.1 $J/cm^2$ of UV irradiation and germinated after 8 days at $4^{\circ}C$. Additionally, the activities of chitinases and proteases produced by I. fumosorosea SDTv were varied according to the medium. In conclusion, I. fumosorosea SDTv which showed high mortality rate against greenhouse whitefly will be used effectively in the integrated pest management programs against the greenhouse whitefly.