DOI QR코드

DOI QR Code

Development of Sustainable Food Waste Management for Reducing Greenhouse Gases Emissions in Korea

국내 음식물쓰레기 온실가스 저감을 위한 선순환체계 구축

  • Lee, Saeromi (Environmental Resource Research Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Jae Roh (Environmental Resource Research Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Ahn, Chang Hyuk (Environmental Resource Research Center, Korea Institute of Civil Engineering and Building Technology)
  • 이새로미 (한국건설기술연구원 환경자원재생연구센터) ;
  • 박재로 (한국건설기술연구원 환경자원재생연구센터) ;
  • 안창혁 (한국건설기술연구원 환경자원재생연구센터)
  • Received : 2020.09.17
  • Accepted : 2020.10.27
  • Published : 2020.12.31

Abstract

In this study, we analyze the current state of domestic food waste (FW) recycling and propose a management plan for greenhouse gas (GHG) emissions. First, the composting potential of the GW demonstrates considerable promise. In particular, the GW (phytoplankton, periphyton, macrophyte, etc.) as a third-generation biomass shows strong performance as a functional additive that mitigates the disadvantages associated with composting FW and improves the quality of the final composted product. Alternatively, the final product (e.g., soil ameliorant) can be used to produce bio-filters that are effective pollutant buffers, with high applicability for green infrastructure. The proposed ecological approaches create new opportunities for FW as a resource for the reduction of GHG emissions, and are expected to contribute to the establishment of effective net-zero carbon systems in the future.

본 연구에서는 국내 음식물쓰레기 (food waste, FW) 분야에 대한 재활용 현황을 분석하고 green house gases (GHG) 배출 관리방안에 대해 고찰하였다. 연구 결과, FW의 자원 활용성을 향상시키고 GHG 배출을 부가적으로 저감시키기 위해서는 적절한 선순환체계가 필요하다는 결론을 얻었다. 효과적인 퇴비화를 위해서 우선 GW의 활용이 고려되었다. 특히 3세대 바이오매스로써의 GW (phytoplankton, periphyton, macrophyte etc.)는 퇴비화 공정에서 FW의 단점을 보완하고 질적 능력을 향상시킬 수 있는 좋은 기능성 첨가제로 판단된다. 또 하나의 접근법은 최종산물 (예: 토양개량제)을 오염물질 완충이 가능한 bio-filter로 가공하여 그린인프라에 적용하는 방안이다. 이러한 생태공학적 접근과 시도는 안정화된 재활용 산물의 기존 활용 이외에도 FW 자원화에 대한 새로운 적용처를 제시할 수 있으므로 향후 효과적인 탄소 넷제로 (Net-Zero) 시스템 구축에 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. Andersen, J.K., Boldrin, A., Christensen, T.H., and Scheutz, C. 2010. Mass balances and life-cycle inventory for a garden waste windrow composting plant (Aarhus, Denmark). Waste Management & Research 28: 1010-1020. https://doi.org/10.1177/0734242X09360216
  2. Beck-Friis, B., Smars, S., Jonsson, H., and Kirchmann, H. 2001. Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. Journal of Agricultural Engineering Research 78: 423-430. https://doi.org/10.1006/jaer.2000.0662
  3. Chang, J.I. and Hsu, T.E. 2008. Effects of compositions on food waste composting. Bioresource Technology 99: 8068-8074. https://doi.org/10.1016/j.biortech.2008.03.043
  4. de Guardia, A., Mallard, P., Teglia, C., Marin, A., Pape, C.L., Launay, M., Bemoist, J.C., and Petiot, C. 2010. Comparison of five organic wastes regarding their behaviour during composting. Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management 30: 402-414. https://doi.org/10.1016/j.wasman.2009.10.019
  5. Ebner, J., Babbitt, C., Winer, M., Hilton, B., and Williamson, A. 2014. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Applied energy 130: 86-93. https://doi.org/10.1016/j.apenergy.2014.04.099
  6. Edjabou, M.E., Petersen, C., Scheutz, C., and Astrip, T.F. 2016. Food waste from Danish households: gerneration and composition. Waste Management 52: 256-268. https://doi.org/10.1016/j.wasman.2016.03.032
  7. Eklind, Y. and Kirchmann, H. 2000. Composting and storage of organic household waste with different litter amendments. II : nitrogen turnover and losses. Bioresource Technology 74: 125-133. https://doi.org/10.1016/S0960-8524(00)00005-5
  8. Francou, C., Lineres, M., Derenne, S., Villio-Poitrenaud, M.L., and Houot, S. 2008. Influence of green waste, biowaste and paper-cardboard initial ratios on organic matter transformations during composting. Bioresource technology 99: 8926-8934. https://doi.org/10.1016/j.biortech.2008.04.071
  9. Grigatti, M., Barbanti, L., Hassan, M.U., and Ciavatta, C. 2020. Fertilizing potential and CO2 emissions following the utilization of fresh and composted food waste anaerobic digestates. Science of the Total Environment 698: 134198. https://doi.org/10.1016/j.scitotenv.2019.134198
  10. Han, W., Clarke, W., and Pratt, S. 2014. Composting of waste algae: a review. Waste Management 34(7): 1148-1155. https://doi.org/10.1016/j.wasman.2014.01.019
  11. Hellebrand, H.J. 1998. Emission of nitrous oxide and other trace gases during composting of grass and green waste. Journal of Agricultural Engineering Research 69: 365-375. https://doi.org/10.1006/jaer.1997.0257
  12. Jeong, Y.K. and Hwang, S.J. 2005. Optimum doses of Mg and P salts for precipitating ammonia into struvite crystals in aerobic composting. Bioresource Technology 96: 1-6. https://doi.org/10.1016/j.biortech.2004.05.028
  13. Ju, M., Bae, S.J., Kim, J.Y., and Lee, D.H. 2016. Solid recovery rate of food waste recycling in South Korea. Journal of Material Cycles and Waste Management 18: 419-426. https://doi.org/10.1007/s10163-015-0464-x
  14. Komilis, D.P. and Ham, R.K. 2006. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste Management 26: 62-70. https://doi.org/10.1016/j.wasman.2004.12.020
  15. Mak, T.M., Xiong, X., Tsang, D.C., Iris, K.M., and Poon, C.S. 2020. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology 297: 122497. https://doi.org/10.1016/j.biortech.2019.122497
  16. Mattei, P., Pastorelli, R., Rami, G., Mocali, S., Giagnoni, L., Gonnelli, C., and Renella, G. 2017. Evaluation of dredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure. Journal of Hazardous Materials 333: 144-153 https://doi.org/10.1016/j.jhazmat.2017.03.026
  17. ME (Ministry of Environment). 2017. Research on food waste disposal status and management plan. Korea. pp. 1-216.
  18. Moult, J.A., Allan, S.R., Hewitt, C.N., and Berners-Lee, M. 2018. Greenhouse gas emissions of food waste disposal options for UK retailers. Food Policy 77: 50-58. https://doi.org/10.1016/j.foodpol.2018.04.003
  19. Munesue, Y., Masui, T., and Fushima, T. 2015. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies 17(1): 43-77. https://doi.org/10.1007/s10018-014-0083-0
  20. Nakakubo, T., Tokai, A., and Ohno, K. 2012. Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. Journal of Cleaner Production 32: 157-172. https://doi.org/10.1016/j.jclepro.2012.03.026
  21. Pardo, G., Moral, R., Auilera, E., and Prado, A.D. 2015. Gaseous emissions from management of solid waste: a systematic review. Global Change Biology 21: 1313-1327. https://doi.org/10.1111/gcb.12806
  22. Prakash, S. and Nikhil, K. 2014. Algae as a soil conditioner. International Journal of Engineering & Technical Research (IJETR) 2(4): 68-70.
  23. Sanchez, A. Artola, A., Font, X., Gea, T., Barrena, R., Gabriel, D., Sanchez-Monedero, M.A., Roig, A., Cayuela, M.L., and Mondini, C. 2015. Greenhous gas from organic waste composting: Emissions and measurement. Environmental Chemistry Letter 13: 223-238. https://doi.org/10.1007/s10311-015-0507-5
  24. Schott, A.B.S., Wenzel, H., and la Cour Jansen, J. 2016. Identification of decisive factors for greenhouse gas emissions in comparative life cycle assessments of food waste management-an analytical review. Journal of Cleaner Production 119: 13-24. https://doi.org/10.1016/j.jclepro.2016.01.079
  25. Song, W.C., Kim, S.E., and Sung, J.E. 2019. The Characteristic of Social Problem-Solving Research of Public Research Institute. Korean Association of Science and Technology Studies 19(1): 53-90.
  26. Stoknes, K., Scholwin, F., Krzesinski, W., Wojciechowska, E., and Jasinska, A. 2016. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste management 56: 466-476. https://doi.org/10.1016/j.wasman.2016.06.027
  27. Wang, X., Selvam, A., Chan, M., and Wong, J.W.C. 2013. Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresource Technology 147: 17-22. https://doi.org/10.1016/j.biortech.2013.07.060
  28. Yang, F., Li, G.X., Yang, Q.Y., and Luo, W.H. 2013. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting. Chemosphere 93: 1393-1399. https://doi.org/10.1016/j.chemosphere.2013.07.002