• Title/Summary/Keyword: Green-emitting OLED

Search Result 84, Processing Time 0.032 seconds

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

RGB White Organic Light Emitting Diode with a Color Control Layer

  • Lee, Jeong-Ik;Chu, Hye-Yong;Yang, Yong-Suk;Lee, Mi-Do;Chung, Sung-Mook;KoPark, Sang-Hee;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1587-1590
    • /
    • 2006
  • Through the engineering of recombination region and energy transfer in organic light emitting device, blue and red light emitting device with good color stability has been successfully obtained. A Color control layer (CCL), which emits green light through the energy transfer from the emission layers, has been introduced into the blue and red light emitting device for RGB white OLED. The RGB white OLED showed the current efficiency of 13 cd/A and the CIE coordinates of (0.33, 0.38) at $1000\;cd/m^2$. The device exhibited very stable spectrum with respect to operating current density and the CIE coordinates varied from (0.34, 0.38) to (0.31, 0.37) for $100-22000\;cd/m^2$.

  • PDF

Effect of Hole-Transporting Layer and Solvent in Solution Processed Highly-Efficient Small Molecule Organic Light-Emitting Diodes

  • Jo, Min-Jun;Hwang, Won-Tae;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.250-250
    • /
    • 2012
  • Organic light-emitting diodes (OLED) and polymer light emitting diodes (PLED) have been regarded as the candidate for the next generation light source and flat panel display. Currently, the most common OLED industrial fabrication technology used in producing real products utilizes a fine shadow mask during the thermal evaporation of small molecule materials. However, due to high potential including low cost, easy process and scalability, various researches about solution process are progressed. Since polymer has some disadvantages such as short lifetime and difficulty of purifying, small molecule OLED (SMOLED) can be a good alternative. In this work, we have demonstrated high efficient solution-processed OLED with small molecule. We use CBP (4,4'-N,N'-dicarbazolebiphenyl) as a host doped with green dye (Ir(ppy)3 (fac-tris(2-phenyl pyridine) iridium)). PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and TPD (N,N'diphenyl-N,N'-Bis (3-methylphenyl)-[1,1-biphenyl]-4,4'-diamine) are employed as an electron transport material and a hole transport material. And TPBi (2,2',2''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole)) is used as an hole blocking layer for proper hole and electron balance. With adding evaporated TPBi layer, the current efficiency was very improved. Among various parameters, we observed the property of OLED device by changing the thickness of hole transporting layer and solvent which can dissolve organic material. We could make small molecule OLED device with finding proper conditions.

  • PDF

Study on the Efficient White Organic Light-Emitting Diodes using the Material of Binaphthyl Group (Binaphthyl group 기반의 물질을 이용한 효율적인 White OLED 소자에 대한 연구)

  • Yeo, Hyun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • We had synthesized a green dopant material based on the binaphthyl group, 7,7'-(2,2'dimethoxy-1,1'-binaphthyl-3,3'-diyl) bis(4-(thiophen -2-yl) benzo[e][1,2,5] thiadiazole (TBT). We also fabricated the white organic light emitting diode (OLED) with a phosphorescent blue emitter : iridium(III)bis[(4,6-di-fluoropheny)-pyridinato -N,C2]picolinate (FIrpic) doped in N,N'-dicarbazolyl-3,5-benzene (mCP) of hole transport type host material and both TBT and bis(2-phenylquinolinato)- acetylacetonate iridium(III) (Ir(pq)2acac) doped in 1,3,5-tris(N-phenylbenzimidazole -2-yl)benzene (TPBi) of electron transport type host material. As a result, the property of white OLED using TBT, which demonstrated a maximum luminous efficiency and external quantum efficiency of 5.94 cd/A and 3.23 %, respectively. It also showed the pure white emission with Commission Internationale de I'Eclairage (CIE) coordinates of (0.34, 0.36) at 1000 nit.

A study on the simplified fabrication structure for the multi-color OLED display

  • Baek, H.I.;Kwon, D.S.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1046-1049
    • /
    • 2006
  • We proposed a simplified fabrication structure and method which can provide separate Red (R), Green (G), Blue (B), and White (W) OLED pixels with 2 metal-mask changes in emitting layer fabrication inspired from the structure of multi-layer white OLED and carrier blocking mechanism. A red emission layer for the R and W pixel with 1st mask, and then a blue emission layer with hole blocking layer for the B and W pixel with 2nd mask, and finally a common green emission layer were deposited sequentially. We expect that this concept would be very useful to the actual fabrication of multi-color OLED display although additional optimization is needed.

  • PDF

High Contrast Red, Green, and Blue Organic Lightemitting Diodes using Inorganic Metal Multi Layers

  • Kim, You-Hyun;Lee, Sang-Youn;Song, Wook;Mong, Mei;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.787-790
    • /
    • 2009
  • High contrast red, green and blue organic light-emitting diodes were fabricated using inorganic metal multi layer composed of thin Al, KCl and thick Al and then were compared to optical and electrical characteristics with the attached polarizer and conventional OLEDs. Ambient light reflection of OLED using inorganic metal layer, polarizer and conventional metal layer were 29.2, 31.1 and 82.5% respectively. Optical characteristics of OLEDs using inorganic metal layer were max luminescence of 13040 cd/m2 and luminous efficiency of 2.12 cd/A at 8V whereas OLEDs using polarizer has 8456 cd/m2 and 1.43 cd/A at 8V each. OLEDs including inorganic metal multi layers show significant technical advantages in achieving high performance of OLED display with improved contrast ratio of 251:1, specifically in Red OLED.

  • PDF

Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent

  • Ahn, Yeonseon;Jang, Da Eun;Cha, Yong-Bum;Kim, Mansu;Ahn, Kwang-Hyun;Kim, Young Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.

Synthesis of 6-Alkyl-3-Chromonealdehyde(2,2-dialkyl)hydrazone Derivatives for Green Light Emitting Materials (녹색발광 6-알킬-3-크로몬알데히드(2,2-디알킬)하이드라존 유도체의 합성)

  • Chung, Pyung-Jin;Chang, Hong-Joon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • 6-Alkyl-3-chromonealdehyde (2,2-dialkyl)hydrazone derivatives were synthesized by dehydration condensation. They are green-emitting materials for organic light emitting device (OLED) composed of electron acceptor of 6-alkyl-3-chromonealdehydes and electron donor of 2,2-dialkylhydrazones in a conjugated structure. The structural properties of reaction products were analyzed by FT-IR and $^1H$-NMR spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties were also determined by excitation spectra and emission spectra, respectively.

Synthesis of 3-Chromonealdehyde(2,2-disubstituted)hydrazone Derivatives for Green Light Emitting Materials (녹색발광 3-크로몬알데히드(2,2-이치환)하이드라존 유도체의 합성)

  • Chung, Pyung Jin;Chang, Hong Joon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.670-674
    • /
    • 2009
  • 3-Chromonealdehyde(2,2-disubstituted)hydrazone derivatives were synthesized by dehydration condensation. They are green-emitting materials for organic light emitting device (OLED) composed of electron acceptor of 3-chromonealdehydes and electron donor of 2,2-disubstituted hydrazones by a conjugated structure. The structural properties of reaction products were analyzed FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties can be determined by excitation spectra and emission spectra, respectively.

Recent Research Highlights in Blue Fluorescent Emitters in Organic Light-Emitting Diodes (유기발광 다이오드(OLED) 및 이를 위한 청색형광체)

  • Park, Young Il;Kim, Jin Chul;Seo, Bongkuk;Cho, Deug-Hee
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-236
    • /
    • 2014
  • Organic light emitting diodes (OLEDs) received much attention from both academia and industry as the next-generation flat panel displays. However, to produce high quality OLEDs, there are still many challenges to overcome. Especially, in full color OLEDs, the intrinsic wide band gap of the blue emitting materials results in inferior efficiency compared to those of green and red emitting materials. Therefore, extensive research efforts have been devoted to develop efficient blue emitting materials. This review briefly summarizes the basics of OLEDs and introduces highlights of research efforts in blue-emitting materials.