• Title/Summary/Keyword: Green soils

Search Result 210, Processing Time 0.023 seconds

A Comparative Analysis of Stormwater Runoff with Regard to Urban Green Infrastructure - A Case Study for Bundang Newtown, SungNam - (도시 녹지기반 특성에 따른 강우 유출수 비교 분석 - 성남시 분당신도시를 사례로 -)

  • Park, Eun-Jin;Kang, Kyu-Yi;Lee, Hyun-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • The study was aimed at analyzing the relationship between the characteristics of urban green infrastructure and stormwater runoff in a small urban watershed composed of 22 drainage basins. The green areas of which soils are not sealed and allow water infiltrate, were examined for different types of green spaces. In a comparative study for drainage basins of which green spaces are 15.5% and 34.4%, respectively, runoffs were not different with the size of green space. It was attributed to that the increase of runoff by greater road area offset the advantage of greater green area. Another comparative measurement of runoff for drainage basins with similar green area size showed that runoff decreased with greater permeable area (school ground area) and smaller road area. The runoff measurements could address that runoff rates are affected not only by green area size but also by the type of green area and other land covers related to permeability and flow into drainage. It implicated that the improvement of urban green infrastructure as a functional unit for water infiltration and interception is important for stormwater runoff management.

A Study on the Application of Natural Circulation -based Green Village Landscape Design-: The Case of Joongchon Village in Gimje-si (자원순환형 녹색마을 경관디자인 적용에 관한 연구 -김제시 중촌마을을 대상으로-)

  • Kim, Sang-Bum;Son, Ho-Gi;Lee, Chang-Hun;Rhee, Sang-Young
    • Journal of Agricultural Extension & Community Development
    • /
    • v.18 no.4
    • /
    • pp.961-981
    • /
    • 2011
  • This study selected Joongchon Village in Gimje-si as a target, in order to apply green village design regarding regional circumstances and features within the local government, in making green village as an efficient scheme in aspect of locality for 'Low Carbon, Green Growth'. Subsequently, we conducted survey and analysis. Natural circulation-based green village of Joongchon Village in Gimje-si is a low carbon green village, based upon eco-friendly cattle shed. Even though it is the fact that the initial costs of an eco-friendly cattle shed are rather high, it is the long-term low carbon green technology that can transform livestock night soils into resources, provide them to agricultural farms, independently supply energies from by-product, and produce energies additionally. Therefore, Joongchon Village in Gimje-si is the good example of green village, applying the design which actively utilizes discharged by-product from cattle shed, so natural circulation and energy production are able as an eco-friendly green technology.

Development of Decontamination Methods using Liquid/Supercritical $CO_2$

  • Park, Kwangheon;Moonsung Koh;Chunghyun Yoon;Kim, Hongdoo;Kim, Hakwon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.106-113
    • /
    • 2004
  • A major problem of nuclear energy is the production of radioactive wastes. Needs for more environmentally favorable method to decontaminate radioactive contaminants make the use of liquid/Supercritical $CO_2$ as a solvent medium. In removing radioactive metallic contaminants under $CO_2$ solvent, two methods - use of chelating ligands and that of water in $CO_2$ emulsion - are possible. In the chelating ligand method, a combination of ligands that can make synergistic effects seems important. We discuss about the properties of microemulsion formed by F-AOT. By adding acid in water core, decontamination of metallic parts, soils were possible.

  • PDF

Soil Physico-chemical Properties by Land Use of Anthropogenic Soils Dredged from River Basins

  • Park, Jun-Hong;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • This study was conducted to analyze soil physico-chemical properties of agricultural land composed from the river-bed sediments. We investigated the changes of soil physico-chemical properties at 30 different sampling sites containing paddy, upland and plastic film house from 2012 to 2015. pH, exchangeable calcium and magnesium decreased gradually in paddy soils during the four years, whereas the available $P_2O_5$, exchangeable Ca, Mg and EC increased in upland and plastic film house soil. For the soil physical properties, bulk density and hardness of topsoil were $1.47g\;cm^{-3}$ and 21.5 mm and those of subsoil were $1.71g\;cm^{-3}$ and 25.7 mm in paddy soils. In upland soils, bulk density and hardness of topsoil were $1.48g\;cm^{-3}$ and 15.9 mm and those of subsoil were $1.55g\;cm^{-3}$ and 16.9 mm. In plastic film house soils, bulk density and hardness of topsoil were $1.42g\;cm^{-3}$ and 14.4 mm and those of subsoil were $1.40g\;cm^{-3}$ and 18.5 mm, respectively. The penetration hardness was higher than 3 MPa below soil depth 20 cm, and it is impossible to measure below soil depth 50 cm. As these results, in agricultural anthropogenic soils dredged from river basins, the pH, amount of organic matter and exchangeable cations decreased and soil physical properties also deteriorated with time. Therefore, it is needed to apply more organic matters and suitable amount of fertilizer and improve the soil physical properties by cultivating green manure crops, deep tillage, and reversal of deep soils.

Soil Organic Carbon Dynamics in Korean Paddy Soils (우리나라 논 토양의 토양유기탄소 변동 특성)

  • Jung, Won-Kyo;Kim, Sun-Kwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.36-42
    • /
    • 2007
  • Korean paddy soils have long been almost uniformly managed throughout the whole country with flooded, deep tillage, puddlling, transplanting, and uncovering after harvest. Management of soil organic carbon could be more important in the sources of green house gases. However, soil organic carbon dynamics were not been studied for Korean paddy soils. Therefore, we evaluated the changes in soil organic carbon (SOC) of paddy soils between 1999 and 2003 at the same locations nationwide except islands. Soil organic carbon tends to increase in Inceptisols, which is predominant soil order for Korean paddy soils, from 1999 to 2003. Soil organic carbon increases in topographically plain paddy soils was greater than in valley soils, and was considerably high in predominant types of paddy soils (i.e., well adapted paddy soils, sandy paddy soils, and poorly drained paddy soils) but low and stable in the saline paddy soils. We also found that clay paddy soils are greater in soil organic carbon than sandy paddy soils. Through this study, we concluded that a proper management of paddy soils could contribute to soil organic carbon storage, which imply that the Korean paddy soils could help to enhance carbon dioxide sequestration via soil organic matter into the soil.

Natural Ripening versus Artificial Enhancing of Silty Reclaimed Tidal Soils for Upland Cropping Tested by Profile Characterization

  • Ibrahim, Muhammad;Han, Kyung-Hwa;Lee, Kyung-Do;Youn, Kwan-Hee;Ha, Sang-Keun;Zhang, Yong-Seon;Hur, Seung-Oh;Yoon, Sung-Won;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This study was performed to produce basic data for silty reclaimed tidal lands and to develop techniques of environmentally-friendly utilization in agricultural system. We chose the two sites in Saemangeum reclaimed tidal lands, one (Site I) has been treated with cultivating green manure and conducting the desalinization process through submergence since April, 2007 and the other (Site II) has been under natural condition without artificial treatment. In situ and ex situ physic-chemical properties were determined and comparisons were made for soil profiles examined at these two sites in April 2009. Surface soil of Site I had lower EC and higher field saturated hydraulic conductivity than those of Site II, uncultivated land. Especially, exchangeable sodium content was lowest in Site I Ap1 layer than in other layers. This is probably due to flooding desalination and green manure cultivation. Besides, Ap1 and A2 layers of soil profile in Site I showed brighter soil color and more root observation than those of Site II. This is probably due to green manure cultivation. By the large, for high cash upland crops and intensive agricultural use of silty reclaimed tidal land, site-specific soil ripening such as flooding desalination and green manure cultivation could be useful.

Effects of Green Manure on Soil Properties and Grain Yield of Sorghum (Sorghum bicolor Moench) (수수 재배 시 풋거름작물 이용이 토양특성 변화와 수수의 수량에 미치는 영향)

  • Kim, Sung-Kook;Jung, Gun-Ho;Shin, Sung-Hyu;Kim, Min-Tae;Kim, Chung-Guk;Shim, Kang-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.290-296
    • /
    • 2016
  • Green manure has been used as alternative to chemical fertilizer. To evaluate the effect of green manure on the chemical properties of top-soil and sorghum yield, hairy vetch (Vicia villosa Roth, HV), manure barley (MB), and a mixture of hairy vetch and manure barley (HV+MB) were incorporated into the soil at a rate of $100kg-N\;N\;ha-1$ before the sorghum was transplanted. Total biomass of sorghum grown in the HV, MB, and HV+MB treatments was 13.1, 31.6, and $25.2t\;ha^{-1}$, respectively, and the nitrogen production of the treatments was 81, 74, and $145kg\;ha^{-1}$, respectively. The SPAD value of the uppermost leaf of sorghum plants grown in the soils with HV, MB, or HV+MB were very similar until heading stage; however, at maturity, the SPAD value of sorghum cultivated in the soils with HV was lower than that of sorghum in the soils with MB or HV+MB. This could be because the nitrogen release from HV was too rapid to supply nitrogen to sorghum during the later stage of grain filling. Compared with chemical fertilizers, the incorporation of green manure increased the pH, exchangeable cations ($K^+$, $Mg{^{+}^{+}}$, and $Ca{^{+}^{+}}$), and total nitrogen in soil postharvest, indicating an improvement in soil chemical properties. Total carbon content increased in soil with green manure incorporated, but decreased in the chemical fertilized soil, suggesting that sorghum cultivation using green manure may sequester carbon in soils. The yield of sorghum cultivated with green manure was not different from the yield of sorghum cultivated with chemical fertilizers. These results suggest that the mixture of hairy vetch and manure barley can be a useful chemical fertilizer alternative in sorghum cultivation.

Optimum Level of Nitrogen Fertilizer Based on Content of Nitrate Nitrogen for Growing Chinese Cabbage in Green House (시설조건(施設條件)의 배추 재배(栽培) 토양(土壤)에서 질산태질소(窒酸態窒素) 검정(檢定)에 의한 질소실비량(窒素施肥量) 결정(決定))

  • Park, Hyo-Taek;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.384-392
    • /
    • 2000
  • To establish N fertilizer recommended scheme for the Chinese cabbage cultivation in green house based on the soil test of nitrate nitrogen, relationship among the content of soil nitrate and fertilizer effects and fertilizer N use efficiency were investigated from nine soils which differed amount of nitrate nitrogen from $14mg\;kg^{-1}$ to$226mg\;kg^{-1}$. The amount of nitrate nitrogen in soil showed a positive correlation with the dry weight of chinese cabbage in the plot of no fertilization. When the fertilizer effects were calculated by difference between the plots of fertilization and no fertilization in the dry weight and the amount of N uptake, a negative correlation was obtained between the amount of nitrate nitrogen in soils and the fertilizer effects. There was also a negative correlation between the amount of nitrate nitrogen in soils and fertilizer use efficiency. Recommendation of application rate of nitrogen fertilizer based on content of $NO_3-N$ in soils was evaluated by the regression equation among the content of soil nitrate, fertilizer effects and fertilizer N use efficiency. Incase the content of $NO_3-N$ nitrogen in soil is more than $200mg\;kg^{-1}$, No N fertilization is recommended; However, The standard N fertilization($320kg\;ha^{-1}$) is recommended for the soils with less than $50mg\;kg^{-1}$. For the soils ranged from $50mg\;kg^{-1}$ to $200mg\;kg^{-1}$ in the amount of nitrate nitrogen, an equation has been developed in order to calculate the recommended amount of fertilizer N.

  • PDF

Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils (중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용)

  • Kim, Kwon-Rae;Naidu, Ravi;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

The Effect of Pyroligneous Acid on Turfgrass Growth - The Case of Yong-Pyong Golf Course Green - (목초액의 잔디 생육효과 - 용평 골프 코스 그린을 대상으로 -)

  • 이상재;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.95-104
    • /
    • 2002
  • This study was carried out to investigate the effects of pyroligneous acid on turfgrass growth and to propose usage for sustainable management on Korean golf course green. Each plot was treated with 0, 300, 500, and 800 acid to water solution. On all the plots, turfgrass growth increment and visual quality were measured at fried times. The data were subjected to paired samples t-test and corelation analysis. The summarized results are as follows; 1) Leaf growth increment, density, and root spread depth of turfgrass treated with 1: 500 and 1: 800 diluted pyroligneous acid were significantly superior to the control. Particularly, 1: 500 diluted solution was superior to the others. 2) Color, texture, and uniformity of turfgrass treated with 1: 500 and 1: 800 diluted pyroligneous acid were significantly superior to the control. Especially, 1: 500 diluted solution tended to be superior to the others. 3) There were no symptoms of disease in all plots treated with the diluted pyroligneous acid. 1 500 and 1: 800 diluted pyroligneous acid were not thought to trigger or promote disease. 4) Before and after investigating the effect of pyroligneous acid on turfgrass growth ,the soils were analyzed. In all treatments, the chemical properties of the soils did not change noticeably. The chemical properties of the soils might be not changed by the diluted pyroligneous acid treatments. 5) Considering the results mentioned above, 1: 500 diluted pyroligneous acid was the most effective. Though pyroligneous acid is an organic fertilizer and contains only a little nitrogen and phosphorus, 1: 500 diluted pyroligneous acid promoted turfgrass growth effectively. Thus this use might lead to a reduction in the amount of fertilizers used and result in ecologically responsive management of Korean golf courses.