• 제목/요약/키워드: Green microstructure

검색결과 134건 처리시간 0.026초

타이타늄 합금 분말 형상 및 치밀화 기구에 따른 미세조직 및 기계적 물성 영향 연구 (Effects of Powder Shape and Densification Mechanism on the Microstructures and Mechanical Properties of Ti-6Al-4V Components)

  • 김영무;권영삼;송영범;이성호
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.311-318
    • /
    • 2019
  • The objective of this study is to investigate the influence of powder shape and densification mechanism on the microstructure and mechanical properties of Ti-6Al-4V components. BE powders are uniaxially and isostatically pressed, and PA ones are injection molded because of their high strengths. The isostatically compacted samples exhibit a density of 80%, which is higher than those of other samples, because hydrostatic compression can lead to higher strain hardening. Owing to the higher green density, the density of BE-CS (97%) is found to be as high as that of other samples (BE-DS (95%) and P-S (94%)). Furthermore, we have found that BE powders can be consolidated by sintering densification and chemical homogenization, whereas PA ones can be consolidated only by simple densification. After sintering, BE-CS and P-S are hot isostatically pressed and BE-DS is hot forged to remove residual pores in the sintered samples. Apparent microstructural evolution is not observed in BE-CSH and P-SH. Moreover, BE-DSF exhibits significantly fine grains and high density of low-angle grain boundaries. Thus, these microstructures provide Ti-6Al-4V components with enhanced mechanical properties (tensile strength of 1179 MPa).

마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동 (Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM)

  • 유우경;최준필;이재성
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

Sustainable construction material using nanosilica and multi-walled carbon nanotubes in cement concrete

  • Breetha Yesudhas Jayakumari;Elangovan Nattanmai Swaminathan;Pachaivannan Partheeban
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.459-472
    • /
    • 2024
  • Nanotechnology is a popular field in the construction industry due to its multiple functions. It mitigates CO2 emissions and enhances the desirable properties of concrete by replacing small amounts of cement with supplements. This study assess the sustainability impact of using two different nanoparticles partially replacing the cement with 0.3%, 0.6%, 1.0% of nano silica (NS) and 0.03%, 0.045%, 0.06% of Multi-Walled Carbon Nanotubes (MWCNT) in the green concrete mix developement. Nano-sized fragments at the atomic scale tends to modify the properties of concrete. Concrete may increase its strength, durability by adding nanocomposite materials, which will decrease the amount of nano and micropores in structural parts. The strength of the structural elements can be greatly improved and allowing them to withstand higher loads and resist deformation. It improved durability properties by 64.8% in water absorption, 56.4% in acid attack, 78.1% in sulphate attack, and 53.4% in chloride attack. There was an improvement in compressive strength of 37% and split tensile strength of 90%. SEM, FTIR, and XRD investigations have used to look at the microstructural characteristics of nanoconcrete dictated the microstructure characteristics may be made more consistent and dense by adding nanocomposite materials.

초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직 (Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis)

  • 허연지;이의선;오승탁;변종민
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

Sintering and Grain Growth of Rare Earth-Doped Ceria Particles

  • Sameshima, Soichiro;Higashi, Kenji;Hirata, Yoshihiro
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.65-86
    • /
    • 2000
  • Rare earth-doped ceria powders with a composition of Ce0.8R0.2O1.9(R=Yb, Y, Gd, Sm, Nd and La) were prepared by heating the oxalate coprecipitate. The green compacts began to shrink at 600$^{\circ}$-700$^{\circ}C$. The relative density after the sintering at 1200$^{\circ}$ and 1400$^{\circ}C$ became higher for the higher green density. The samples were densified above 98% relative density by the sintering ant 1600$^{\circ}C$ for 4 h and the grain sizes (4.7-7.6$\mu\textrm{m}$) showed a tendency to become larger with increasing ionic radius of doped-rare earth element. In the intial stag of sintering at 700$^{\circ}$-800$^{\circ}C$, the dominant mass transport process changed from lattice diffusion to grain boundary diffusion to grain boundary diffusion with heating time. The porosity during the intermediated and final stage of the sintering at 1200$^{\circ}$ and 1400$^{\circ}C$ decreased by the mass transport through lattice diffusion with grain growth.

  • PDF

열대지방에서 재배되는 종실의 미세구조에 관한 연구 (Microstructural Properties of Tropical Legume Seeds)

  • 김정교;제미공자
    • 한국식품과학회지
    • /
    • 제20권1호
    • /
    • pp.72-78
    • /
    • 1988
  • 열대지방에서 재배되는 18종의 콩종자의 구조적인 특성을 분류하기 위하여 그 미세구조를 주로 광학현미경으로 조사하였다. vicieae에 속하는 종실들은 많은 단일전분입자들로 구성된 자엽세포구조를 갖는 starch-rich legume이였으며, phaseoleae중에서는 benas(phaseolus), cow pea, green gram(vigna), hyacinth bean(dolicholus)이 starch-rich legume이였다. 한편 soybean(glycine), winged bean(psophocarpus)는 자엽세포가 대부분 protein body로 구성된 protein-rich legume이고 yam bean (pachyrrhizus)와 cluster bean(cyamopsis)에서는 protein body 보이는 구형물질로 이루어진 자엽세포 구조를 볼 수 있었다. 또한 green gram과 winged bean은 soybean에 비하여 두꺼운 세포벽을 갖고 있었으며 pit-pair가 관찰되었다. Lipid body는 winged bean과 soybean에서 볼 수 있었다. starch-rich legume들은 팥고물 제조과정에서 전분입자들이 파괴되지 않음으로써 특징적인 조직감을 부여하는 red bean이나 benas와 같은 phaseolus의 대체 자원으로 제시될 수 있었다.

  • PDF

셀 다공구조를 갖는 Al2O3세라믹스의 제조 (Processing of Al2O3 Ceramics with a Porous Cellular Structure)

  • 임병구;이락형;하정수
    • 한국세라믹학회지
    • /
    • 제44권10호
    • /
    • pp.574-579
    • /
    • 2007
  • Porous $Al_2O_3$ ceramics were prepared by the gelcasting foams method (a slurry foaming process) with acrylamide monomer. The foaming and gelation behavior was investigated with the parameters such as the type and concentration of surfactant, solid loading of slurry, and the concentrations of initiator and catalyst. Density, porosity, microstructure, and strength of the green and sintered samples were characterized. Of the four kinds of surfactants tested, Triton X-114 showed the highest foaming ability for the solid loading of 55-30 vol%. The gelation condition giving the idle time off min was found to set the foamed structure without significant bubble enlargement and liquid lamella thinning. The green samples were fairly strong and machinable and showed maximum strength of 2.4 MPa in diametral compression. The sintered samples showed densities of 10-36% theoretical (i.e. porosity 90-64%) with a highly interconnected network of spherical pores with sizes ranging from 30 to $600{\mu}m$. The pore size and connectivity increased but the cell strut thickness decreased with decreasing the solid loading. Flexural strength of 37.8-1.7 MPa was obtained for the sintered samples.

UNS N08810 합금의 입계부식손상과 원인 분석 (Elucidation of Intergranular Corrosion of UNS N08810 alloys)

  • 김영식;황보덕
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.196-204
    • /
    • 2012
  • Corrosion failure of petrochemical facilities is one of the difficulties in maintenance, since operating conditions of crude oil production, storage, and refinement are very aggressive. UNS N08810, which has been used for crude oil transportation pipes and storage tanks in petrochemical industries, shows good resistance to general corrosion and localized corrosion in several environments. Among its environments, UNS N08810 showed better corrosion resistance in fuel gas containing sulfuric acid and phosphoric acid and sulfur. However, ductility and toughness at high temperature over about $500^{\circ}C$ were greatly reduced due to microstructural change. In general, welding process is the representative method to join the parts in industrial components. Because the alloy by welding can be sensitized and corroded, the manufacturing process should be controlled. In this work, UNS N08810 was used and heat treatment conditions including solution and stabilization treatments were controlled. Oxalic acid etch test by ASTM A262 Practice A was done to evaluate the qualitative sensitization in room temperature. Huey test by ASTM A262 Practice C was done to evaluate the intergranular corrosion rate in boiling 65% $HNO_3$ solution. Also, the microstructure by thermal history was analyzed. Experimental alloy showed high intergranular corrosion rate and its corrosion mechanism was elucidated.

기내 환경에 따른 거베라 'Beauty' 배양묘 잎의 구조적 특성과 탄수화물 함량의 차이 (Structural Characteristics of Leaves and Carbohydrate Content of Propagules Grown at Different Culture Conditions in Gerbera hybrida 'Beauty')

  • 이현숙;임기병;정재동;김창길
    • 식물조직배양학회지
    • /
    • 제28권3호
    • /
    • pp.117-121
    • /
    • 2001
  • 배양환경을 달리하여 생산한 3가지의 유묘 (타가영양묘, 혼합영양묘, 자가영양묘)를 대상으로 잎의 형태적 특성 및 탄수화물 함량 등을 비교 분석한 결과, 온실묘, 자가영양묘와 혼합영양묘는 하표피층에 왁스의 결정형이 관찰되었으나 타가영양묘에서도 관찰되지 않았다. 기공수와 크기에 있어서는 타가영양묘가 자가영양묘에 비하여 기공이 크고 많았다. 특히, 자가영양묘의 기공형태와 크기는 온실에서 자란 유묘와 거의 유사하였다. 식물체의 탄수화물함량은 자가영양묘가 혼합영양과 타가영양묘에 비하여 많았으며 유리당도 역시 자가영양묘가 가장 많았고 모든 배양묘에서 glucose의 함량이 가장 많았다.

  • PDF

Fabrication of isotropic bulk graphite using artificial graphite scrap

  • Lee, Sang-Min;Kang, Dong-Su;Kim, Woo-Seok;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.142-145
    • /
    • 2014
  • Isotropic synthetic graphite scrap and phenolic resin were mixed, and the mixed powder was formed at 300 MPa to produce a green body. New bulk graphite was produced by carbonizing the green body at $700^{\circ}C$, and the bulk graphite thus produced was impregnated with resin and re-carbonized at $700^{\circ}C$. The bulk density of the bulk graphite was $1.29g/cm^3$, and the porosity of the open pores was 29.8%. After one impregnation, the density increased to $1.44g/cm^3$ while the porosity decreased to 25.2%. Differences in the pore distribution before and after impregnation were easily confirmed by observing the microstructure. In addition, by using an X-ray diffractometer, the degrees-of-alignment (Da) were obtained for one side perpendicular to the direction of compression molding of the bulk graphite (the "top-face"), and one side parallel to the direction of compression molding (the "side-face"). The anisotropy ratio calculated from the Da-values obtained was 1.13, which indicates comparatively good isotropy.