• Title/Summary/Keyword: Green gram

Search Result 74, Processing Time 0.02 seconds

Wound Healing Potential of Antibacterial Microneedles Loaded with Green Tea

  • Park, So Young;Lee, Hyun Uk;Kim, Gun Hwa;Park, Edmond Changkyun;Han, Seung Hyun;Lee, Jeong Gyu;Kim, Dong Lak;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.411.1-411.1
    • /
    • 2014
  • This study evaluates the utility of an antibacterial microneedle composed of green tea extract (GT) and hyaluronic acid (HA), for the efficient delivery of GT. These microneedles have the potential to be a patient-friendly method for the conventional sustained release of drugs. In this study, a fabrication method using a mold-based technique to produce GT/HA microneedles with a maximum area of ${\sim}60mm^2$ with antibacterial properties was used to manufacture transdermal drug delivery systems. Fourier transform infrared (FTIR) spectrometry was carried out to observe the potential modifications in the microneedles, when incorporated with GT. The degradation rate of GT in GT/HA microneedles was controlled simply by adjusting the HA composition. The effects of different ratios of GT in the HA microneedles were determined by measuring the release properties. In HA microneedles loaded with 70% GT (GT70), a continuous higher release rate were sustained for 72 h. The in vitro cytotoxicity assays demonstrated that GT/HA microneedles are not generally cytotoxic to chinese hamster ovary cells (CHO-K1), human embryonic kidney cells (293T), and mouse muscle cells (C2C12), which were treated for 12 and 24 h. Antimicrobial activity of the GT/HA microneedles was demonstrated by ~95% growth reduction of gram negative [Escherichia coli (E. coli), Pseudomonas putida (P. putida) and Salmonella typhimurium (S. typhimurium)] and gram positive bacteria [Staphylococcus aureus (S. Aureus) and Bacillus subtilis (B. subtilis)], with GT70. Furthermore, GT/HA microneedles reduced bacterial growth in the infected skin wound sites and improved skin wound healing process in rat model.

  • PDF

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

A Facile Solvent and Catalyst Free Synthesis of New Dihydro Pyrimidinones as Antimicrobial Agents

  • Hegde, Hemant;Ahn, Chuljin;Gaonkar, Santosh L.;Shetty, Nitinkumar S.
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.435-439
    • /
    • 2019
  • An efficient one pot multicomponent synthesis of pyrimidinone derivatives of Biginelli type is described. 4-amino-6-aryl-pyrimidine-5-carbonitrile molecules were synthesized efficiently via three-component Biginelli-type condensation of aldehyde, malononitrile, and semicarbazone as urea substituent in the presence of a catalytic amount of PEG-400 as green medium under microwave irradiation. The reactions proceeded efficiently in the presence of microwave radiation to afford the desired products in good to excellent yields. Products have been confirmed by IR, and NMR spectral analysis. All the molecules were tested for their antimicrobial activity against E. coli, S. aureus, P. aeruginosa and C. tropicalis. Some of the compounds have shown moderate to good inhibition efficiency against both gram-positive and gram-negative bacteria. The potent activity was observed against the fungal species with minimum inhibition concentration 12.5 ㎍/mL.

A study of dental calculus scanning electron microscopic by observation bacteria identification (치석의 주사전자현미경 관찰 및 세균동정에 관한 연구)

  • Jang, Gye-Won
    • Journal of Korean society of Dental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2007
  • A study of the J health college dept of dental hygiene practice vistant a total of 35 supragingival calculus and subgingival calculus picking SEM observation and bacteria identification of the result are followings. 1. As observed by dental calculus SEM, the surface roughness appeared as peaks, valleys, and pits. 2. About bacteteria morphology blood agar plate small green zone partial hemolysis colony streptococcus observation 3. Isolated colony gram stain gram are positive display 4. Supragingival calculus at Lactococcus lactis spp. Leuconostoc spp. Streptococcus mitis, Aerococcus viridans bacteria 1, 3, 3, 16 species detection 5. Subgingival calculus at Aerococcus viridans, Leuconostoc spp. bacteria 5, 1 species detection.

  • PDF

Antimicrobial Activity of Korean Wild Tea Extract According to the Degree of Fermentation (발효정도에 따른 국내산 야생차 추출물의 항균활성)

  • Choi, Ok-Ja;Rhee, Haeng-Jae;Choi, Kyeong-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.148-157
    • /
    • 2005
  • This study was investigated to determine antimicrobial activity of the water and ethanol extracts of Korean wild green tea, semi-fermented tea, and fermented tea. Antimicrobial activity was examined against 8 kinds of several microorganisms. The minimum inhibitory concentration (MIC) of the water and ethanol extracts of green tea showed the most active antimicrobial activity against B. subtilis 0.2 mg/mL in Gram positive bacteria and P. fluorescens 0.3∼0.5 mg/mL in Gram negative bacteria. But the extracts did not show antimicrobial activity against lactic acid bacteria and yeast at the level of less than 1 mg/mL. Antimicrobial activity got lower as tea got more fermented. Antimicrobial activity of ethanol extracts from green tea, semifermented tea, and fermented tea was stronger than that of water extracts. Antimicrobial activity of the water and ethanol extracts of green tea, semi-fermented tea, and fermented tea was not destroyed at 50∼121$^{\circ}C$, and pH 3∼11, which proved to be very stable when given over heat, acid & alkali treatment. The ethanol extract of green tea, semi-fermented tea, and fermented tea was fractionated in the order of hexane, diethyl ether, ethyl acetate and water fraction. The highest antimicrobial activity was found in the water fraction, but not found in hexane fraction, while antimicrobial activity of fermented tea was not found in ether fraction.

Response of Soil Microbial Communities to Applications of Green Manures in Paddy at an Early Rice-Growing Stage (녹비 시용이 초기 논 토양 미생물군집에 미치는 영향)

  • Kim, Eun-Seok;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.221-227
    • /
    • 2011
  • Applications of green manures generally improve the soil quality in rice paddy in part through restructuring of soil microbial communities. To determine how different green manures affect soil microbial communities during the early stages of rice growth, fatty acid methyl ester (FAME) profiles were used to the effects of different management practices: 1) conventional farming (CF), 2) no-treatment (NT), 3) Chinese milk vetch (CMV), 4) green barley (GB), and 5) triticale in paddy field. With applications of green manures, soil organic matter was significantly higher than CF, while soil Na concentration was significantly lower compared with CF (p<0.05). Total soil microbial biomass of CMV was higher (p<0.05) than NF by approximately 31%. The highest ratio of monounsaturated fatty acid to saturated fatty acid was found in the GB plot, followed by CMV and triticale compared with CF (p<0.05), possibly indicating that microbial stress was less in GB and CMV plots. Populations of Gram-negative bacteria and arbuscular mycorrhizal fungi also were significantly higher green manures than CF (p<0.05). Our findings suggest that GB should be considered as optimum green manure for enhancing soil microbial community at an early growing stage in paddy field.

Antimicrobial Activities of Commercially Available Tea on the Harmful Foodborne Organisms (식품유해균에 대한 차류 추출물의 항균효과)

  • 오덕환;이미경;박부길
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.100-106
    • /
    • 1999
  • Use of chemical preservative for controlling harmful microorganisms in food products has been debated due to public concerns about food quality because of perceived toxic and carcinogenic potential. Thus, use of non toxic natural antimicrobial agents has become essential. This study was investigated to determine the antimicrobial activity of water or ethanol extract of commercially available tea, and of solvent fractionated ethanol extracts obtained from steamed green tea. Both of water and ethanol extracts of green tea(steamed or roasted), oolong tea and black tea exhibited strong antimicrobial activity against gram positive and negative bacteria, but not effective against yeast and mold. Also, antimicrobial activity of ethanol extract of 4 different kinds of tea was stronger than that of water extract. Among 4 different tea, ethanol extract of steamed green tea was further fractionated. One thousand g/disk buthanol extract had the strongest antimicrobial activity against bacteria and mold. The concentration of the antimicrobial activity of buthanol extract in tested microorganisms ranged from 125~1000 g/disk except for Rhizopus javanicus. Antimicrobial activity of buthanol extract of steamed green tea was not destroyed by heating at 100oC for 60 min and at 121oC for 15 min, which is very stable over heat treatment. The inhibitory effect of the buthanol extract on the growth of Listeria monocytogenes and Staphylococcus aureus was investigated. Growth of both strains was started in the presence of 250 and 500 g/ml after 12 and 24 hour respectively, whereas complete inactivation of both strains was occurred in the presence of 1000 g/ml.

  • PDF

Biological Activities of Essential Oil from Chamaecyparis obtusa (편백(Chamaecyparis obtusa) 정유의 항균, 항염, 항산화 효과)

  • Ahn Jeung-Youb;Lee Sung-suk;Kang Ha-young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.503-507
    • /
    • 2004
  • The essential oil from Chamaecyparis obtusa was investigated for biological activities in anti-oxidative, anti-inflammation and antibacterial method, respectively. The Growth inhibitory effect of C. obtusa oil on the bacteria was evaluated with MIC (minimum inhibitory concentration), $IC_{50}\;(50\%$ inhibitory concentration), and paper disc method. Two kinds of gram positive strains and two kinds of gram negative strains were used in this study. Gram positive strains were B. subtilis and S. aureus. and Gram negative strains were E. coli and P. aeruginosa. Gram positive strains showed much more intensive effect than gram negative strains. Anti-oxidative effect was investigated with DPPH (1,1-diphenyl-2-picrylhidrazyl) in methanol based and $IC_{50}\;was\;0.78\%.$ Our results suggest that the essential oil from Chamaecyparis obtusa has effects on anti-bacterial, anti- oxidative and anti-inflammation in in vitro and in uiuo. Then this material could be expect synergic effect with other candidated extracts and oils.

Microbiological Characteristics of Low Salt Mul-kimchi (저염 물김치의 미생물균총 특성)

  • Oh, Ji-Young;Hahn, Young-Sook;Kim, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.502-508
    • /
    • 1999
  • Microbiological characteristics of low salt Mul-kimchi was examined. Mul-kimchi was prepared by mixing of radish (25%), green onion (2.4%), red pepper (1.9%), garlic (1.9%) and salt (0, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 2.5, 3.0%) in water and fermented at 4, 15 and $25^{\circ}C$ for 10 days, respectively. During fermentation period, total cell, Leuconostoc sp., Lactobacillus sp., Streptococcus sp., Pediococcus sp., coliform bacteria, gram (-) bacteria and yeast cell number were counted on their selection media. The microbes in Mul-kimchi were isolated and identified. Total cell number increased as salt concentration decreased and fermentation temperature increased. Lactic acid bacteria showed the highest number in 1.0% salt concentration. Yeast cell number increased with increase of salt concentration. Lactobacillus sp. were identified Lactobacillus plantarum and L. pentosus in Mul-kimchi containing $0.2{\sim}1.0%$ salt while those of Mul-kimchi containing 3.0% salt were Lactobacillus plantarum and L. brevis. The other lactic acid bacteria were identified Leuconostoc citrum, Leu.mes.ssp.mesenteroides/dextranicum and streptococcus facium in Mul-kimchi containing $0{\sim}3.0%$ salt while Pediococcus sp. was not detected. Gram-negative Aeromonas hydrophila, Pseudomonas fluorescens, Pseu. aureofaciens and yeast Candida pelliculosa, Cryptococcus laurentii were identified in the Mul-kimchi.

  • PDF

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min;Kim, Yu Mi;Jeon, Jun Min;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2199-2210
    • /
    • 2017
  • Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.