• Title/Summary/Keyword: Green ammonia

Search Result 79, Processing Time 0.018 seconds

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.

Economic Feasibility Comparison of Overseas Green Ammonia Project Using Renewable Energy (신재생 에너지를 이용한 해외 그린 암모니아 프로젝트에 대한 경제성 비교)

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.547-553
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'Net Zero'. Due to limitations in domestic green hydrogen production, Korean companies are interested in importing green hydrogen produced overseas. Because Australia and the Middle East possess high-quality renewable energy resources, they are attracting attention as suitable regions for producing green hydrogen using renewable energy. The cost of constructing and operating a green ammonia plant varies depending on the region. In this study, an economic feasibility comparison of green ammonia plant construction in Australia and the Middle East is conducted. Through this, it is expected to contribute to the economic analysis and feasibility analysis of the project to import hydrogen in the form of green ammonia into Korea.

Preliminary Economic Analysis based on Optimization of Green Ammonia Plant Configuration in the Middle East for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok;Woo-Hyun Son
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.277-285
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'net zero'. Due to limitations in producing green hydrogen domestically, Korean companies are interested in importing green hydrogen produced overseas. The Middle East has high-quality solar energy resources and is attracting attention as a region producing green hydrogen using renewable energy. To build a green ammonia plant, optimization of the production facility configuration and economic feasibility analysis are required. It is expected that it will contribute to reviewing the economic feasibility of constructing overseas hydrogen production plants through preliminary economic feasibility analysis.

The Studies of Photocatalyst Development and the Optimum Operation Conditions for the Removal of Ammonia in a Mixed Reactor of Liquid-vapor Phase (기-액 복합 광반응기에서의 악취성 암모니아 제거를 위한 촉매개발과 반응시스템의 최적조건 색출 연구)

  • Kim, Hae-Ri;Jeon, Min-Kyu;Kim, Joon-Woo;Joo, Gwang-Tae;Choung, Suk-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.512-522
    • /
    • 2008
  • Ammonia is a major compound of odor in livestock house. To enhance the performance of ammonia oxidation (decomposition). the gas-liquid, two phase photocatalytic oxidation system was designed and prepared in this study. Commercial P-25 as $TiO_2$ catalyst was used for ammonia decomposition. V/P-25 catalyst prepared by sol gel method was also used for the removal of by-producted $NO_x$ in $NH_3$ oxidation reaction. When $TiO_2$ was used as a photocatalyst, the conversion to $N_2$ in ammonia decomposition reached above 90% until 200hr (The air flow rate of 4L/min with the ammonia concentration up to 25ppm.). However, considerable amounts of NO and $NO_2$ were formed as a result of $NH_3$ oxidation (as a by-product). Therefore, we added Vanadia impregnated $TiO_2$(P-25) catalyst for the removal of $NO_x$ at the end of reaction trail. The results of a pilot-scale operation were successful to achieve the simultaneous removal of $NH_3\;and\;NO_x$ about 81 and 87%, respectively.

Phenolic plant extracts are additive in their effects against in vitro ruminal methane and ammonia formation

  • Sinz, Susanne;Marquardt, Svenja;Soliva, Carla R.;Braun, Ueli;Liesegang, Annette;Kreuzer, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.966-976
    • /
    • 2019
  • Objective: The methane mitigating potential of various plant-based polyphenol sources is known, but effects of combinations have rarely been tested. The aim of the present study was to determine whether binary and 3-way combinations of such phenol sources affect ruminal fermentation less, similar or more intensively than separate applications. Methods: The extracts used were from Acacia mearnsii bark (acacia), Vitis vinifera (grape) seed, Camellia sinensis leaves (green tea), Uncaria gambir leaves (gambier), Vaccinium macrocarpon berries (cranberry), Fagopyrum esculentum seed (buckwheat), and Ginkgo biloba leaves (ginkgo). All extracts were tested using the Hohenheim gas test. This was done alone at 5% of dry matter (DM). Acacia was also combined with all other single extracts at 5% of DM each, and with two other phenol sources (all possible combinations) at 2.5%+2.5% of DM. Results: Methane formation was reduced by 7% to 9% by acacia, grape seed and green tea and, in addition, by most extract combinations with acacia. Grape seed and green tea alone and in combination with acacia also reduced methane proportion of total gas to the same degree. The extracts of buckwheat and gingko were poor in phenols and promoted ruminal fermentation. All treatments except green tea alone lowered ammonia concentration by up to 23%, and the binary combinations were more effective as acacia alone. With three extracts, linear effects were found with total gas and methane formation, while with ammonia and other traits linear effects were rare. Conclusion: The study identified methane and ammonia mitigating potential of various phenolic plant extracts and showed a number of additive and some non-linear effects of combinations of extracts. Further studies, especially in live animals, should concentrate on combinations of extracts from grape seed, green tea leaves Land acacia bark and determine the ideal dosages of such combinations for the purpose of methane mitigation.

Effect of Application Rate of Hairy Vetch on Ammonia Emission from Paddy Soil (논에서 헤어리베치 시용량에 따른 암모니아 휘산량 평가)

  • Kim, TaeYoung;Daquiado, Aileen Rose;Alam, Faridul;Lee, YongBok
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.375-377
    • /
    • 2012
  • BACKGROUND: Hairy ventch (Vicia villosa) is a good green manure for supplying nitrogen in arable soil. Ammonia emission from rice fields can occur, and the degree of this emission can be great. However, quantitative information of ammonia emission from paddy soil using green manure is required to obtain emission factors for rice cropping in Korea. METHODS AND RESULTS: Ammonia emission from flooding soil with different application rate of hairy vetch was measured using the closed chamber method. For this study, hairy vetch was applied at rates of 0 (control), 500 (H500), 1000 (H1000), 2000 (H2000), and 3000 (H3000) kg/ha (fresh matter basis). This experiment was conducted for 54 days under flooding condition. The total NH3 emission throughout the experiment period was 0.32, 0.54, 1.20, 4.20, and 6.20 kg/ha for control, H500, H1000, H2000, and H3000, respectively. The ratio of NH3 emission to applied nitrogen by hairy vetch for each treatment was 0.7, 1.4, 3.2, and 3.2% for H500, H1000, H2000, and H3000, respectively. CONCLUSION(S): A very small amount of ammonia emission was recorded in the present study. Therefore, the use of hairy vetch in paddy field instead of chemical fertilizer can reduce ammonia emissions.

Removal of Ammonia Nitrogen, Manganese and Arsenic in The Ion Exchanged Natural Zeolite (이온 치환된 천연 제올라이트를 활용한 암모니아성 질소, Mn, As의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.237-245
    • /
    • 2019
  • Ammonia nitrogen is well known as a substance that causes the eutrophication with a phosphorus in the water, because it is contained in the industrial wastewater, agricultural and the stockbreeding wastewater. In addition, manganese (Mn) and arsenic (As) are included in the mine treated water, etc., and are known as a source of water pollution. Natural zeolites are used to remove ammonia nitrogen in water but it have a low adsorption capacity. In order to improve the low adsorption capacity of the natural zeolite, ion substitution was carried out with $Na^+$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$. The adsorption capacity and removal rate of ammonia nitrogen ($NH_4-N$) were the highest at 0.66 mg/g and 89.8% in $Na^+$ ion exchanged zeolite. Adsorption experiments of Mn and As were performed using ion exchanged zeolites. Ion exchanged zeolite with $Mg^{2+}$ showed high adsorption capacity and removal rates of Mn and As.

Techno-economic Analysis and Environmental Impact Assessment of a Green Ammonia Synthesis Process Under Various Ammonia Liquefaction Scenarios (암모니아 액화 시나리오에 따른 그린암모니아 합성 공정의 경제성 및 환경 영향도 평가)

  • Gunyoung Kim;Yinseo Song;Boram Gu;Kiho Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • In this study, two different scenarios for ammonia liquefaction in the green ammonia manufacturing process were proposed, and the economic-feasibility and environmental impact of each scenario were analyzed. The two liquefaction processes involved gas-liquid separation before cooling at high pressure (high pressure cooling process) or after decompression without the gas-liquid separation (low pressure cooling process). The high-pressure cooling process requires higher capital costs due to the required installation of separation units and heat exchangers, but it offers relatively lower total utility costs of 91.03 $/hr and a reduced duty of 2.81 Gcal/hr. In contrast, although the low-pressure cooling process is simpler and cost-effective, it may encounter operational instability due to rapid pressure drops in the system. Environmental impact assessment revealed that the high-pressure cooling process is more environmentally friendly than the low-pressure cooling process, with an emission factor of 0.83 tCO2eq less than the low-pressure cooling process, calculated based on power usage. Consequently, the outcomes of this study provide relevant scenario and a database for green ammonia synthesis process adaptable to various process conditions.

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era (청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향)

  • Weonjun Jeong;Jintae Kim;Kanghee Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.71-93
    • /
    • 2024
  • Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.

A Study on Ammonia Partial Oxidation over Ru Catalyst (Ru 촉매에서의 암모니아 부분산화에 대한 연구)

  • SANGHO LEE;HYEONGJUN JANG;CHEOLWOONG PARK;SECHUL OH;SUNYOUP LEE;YONGRAE KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.786-794
    • /
    • 2022
  • Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by decomposition and partial oxidation. Especially, partial oxidation has the advantages of fast start-up, thermally self-sustaining operation and compact size. In this paper, thermodynamics, start-up and operation characteristics of ammonia partial oxidation were investigated. O2/NH3 ratio, ammonia flow rate and catalyst volume were varied as operation parameters. In thermodynamic analysis, ammonia conversion was maximized in the O2/NH3 range from 0.10 to 0.15. Ammonia partial oxidation reactor was successfully started using 12 V glow plug. At 0.13 of O2/HN3 ratio and 10 LPM of ammonia flow rate, ammonia partial oxidation reactor showed 90% of ammonia conversion over commercial Ru catalyst. In addition, Increasing O2/NH3 ratio from 0.10 to 0.13 was more effective for high ammonia conversion than increasing catalyst volume at 0.10 of O2/NH3.