• Title/Summary/Keyword: Green%27s function method

Search Result 13, Processing Time 0.026 seconds

Site-Specific Ground Motions based on Empirical Green`s Function modified for the Path Effects in Layered Media (층상구조에서 지진파 전파경로를 고려하여 수정된 경험 Green 함수를 이용한 지반운동 모사)

  • 조남대;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.19-27
    • /
    • 2001
  • Seismic parameters fur computation of ground motions in Southern Korea are obtained from recently recorded data, and site-independent regional and site-dependent local strong ground motions are predicted using efficient computational techniques. For the computation of ground motions, we devised an efficient procedure to compute site-independent $x_{q}$ and dependent $x_{s}$ values separately. The first step of this procedure is to use the coda normalization method far computation of site independent Q or corresponding $x_{q}$ value. The next step is the computation of $x_{s}$, values fur each site separately using the given $x_{q}$ value. For computation of ground motions the empirical Green's function (EGF) is modified to account fur the depth and distance variations of subevents on a finite fault plane using the theoritical Green's function. It is computed using wavenumber integration technique in layered media. The site dependent ground motions at seismic stations in southeastern local area were properly simulated using the modified empirical Green's function method in layered medium. The proposed method and procedures fur estimation of site dependent seismic parameters and ground motions could be efficiently used in the low and moderate seismicity regions.ons.s.ons.

  • PDF

Calculation of Stress Intensity Factors Using the Mixed Volume and Boundary Integral Equation Method (혼합 체적-경계 적분방정식법을 이용한 응력확대계수 계산)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1120-1131
    • /
    • 2003
  • A recently developed numerical method based on a mixed volume and boundary integral equation method is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. Firstly, it should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. Secondly, this method takes full advantage of the capabilities developed in FEM and BIEM. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and volume integral equation method. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

Does the China-Korea Free Trade Area Promote the Green Total Factor Productivity of China's Manufacturing Industry?

  • Liu, Zuan-Kuo;Cao, Fei-Fei;Dennis, Bolayog
    • Journal of Korea Trade
    • /
    • v.23 no.5
    • /
    • pp.27-44
    • /
    • 2019
  • Purpose - The purpose of this paper is to analyze the net effect of the green total factor productivity (GTFP) of China's manufacturing industry from the China-Korea Free Trade Area (China-Korea FTA) quantitatively. Design/methodology - Firstly, the Global Malmquist-Luenberger (GML) index based on the SBM directional distance function is used to measure the GTFP of China's manufacturing and analyze the driving force for its growth. Secondly, the regression discontinuity quantitative analysis is used to determine the impact of the China-Korea FTA on China's manufacturing GTFP. Findings - Our main findings can be summarized as follows: the China-Korea FTA has promoted the GTFP of China's manufacturing with an effect evaluation mainly resulting from green technology progress. And there is industry heterogeneity in the policy effect on the manufacturing GTFP due to the China-Korea FTA. Namely, policy promotion from the China-Korea FTA is more effective on the GTFP of equipment manufacturing than it is on those of other industries. Originality/value - First, an evaluation and analysis of the GTFP development of China's manufacturing that employs GML index based on SBM directional distance function. Second, a quantitative estimate of China-Korea FTA's net effect on China's manufacturing industrial GTFP that uses regression discontinuity analysis, which is considered to be the closest method to natural experiments and superior to other causal inference methods. Third, an in-depth discussion of the practical steps that China's manufacturing can take to improve GTFP development and integrate China-Korea FTA construction into economic development.

On the Improved Numerical Method for Hydrodynamic Forces Acting on an Arbitrary Cylinder in the Time Domain (2차원 주상체의 강제 동요시 동유체력의 시간 영역 해석법에 관하여)

  • Y.S.,Shin;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • The linear hydrodynamic forces, acting on a forced oscillating cylinder from its mean position on a free surface with a small amplitude, are calculated in the time domain. The integral equation method using a time dependent Green function is employed. The numerical results for the heaving and swaying circular cylinder are shown and give good agreements with others Furthermore it is shown that the use of the Green function, which is expressed by a series expansion or asymptotic expansion according to time range, reduces computing time greatly.

  • PDF

Dynamic response of functionally graded plates with a porous middle layer under time-dependent load

  • Dergachova, Nadiia V.;Zou, Guangping
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • A dynamic analytical solution for a simply supported, rectangular functionally graded plate with a porous middle layer under time-dependent load based on a refined third-order shear deformation theory with a cubic variation of in-plane displacements according to the thickness and linear/quadratic transverse displacement is presented. The solution achieved in the trigonometric series form and rests on the Green's function method. Two porosity types and their influence on material properties, and mechanical behavior are considered. The network of pores is assumed to be empty or filled with low-pressure air, and the material properties are calculated using the power-law distribution idealization. Numerical calculations have been carried out to demonstrate the accuracy of the kinematic model for the dynamic problem, the effect of porosity, thickness of porous layers, power-law index, and type of loading on the dynamic response of an imperfect functionally graded material plate.

Water Wave Interactions with Array of Floating Circular Cylinders (부유식 원형 실린더 배열에 의한 파 상호작용)

  • Park, Min-Su;Jeong, Youn-Ju;You, Young-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.51-62
    • /
    • 2013
  • The water wave interactions on any three-dimensional structure of arbitrary geometry can be calculated numerically through the use of source distribution or Green's function techniques. However, such a method can be computationally expensive. In the present study, the water wave interactions in floating circular cylinder arrays were investigated numerically using the eigenfunction expansion method with the three- dimensional potential theory to reduce the computational expense. The wave excitation force, added mass coefficient, radiation damping coefficient, and wave run-up are presented with the water wave interactions in an array of 5 or 9 cylinders. The effects of the number of cylinders and the spacing between them are examined because the water wave interactions in floating circular cylinder arrays are significantly dependent upon these.

A Study on the Synthesis of Strong Ground Motion using Empirical Green Function (경험적 그린함수를 이용한 강지진동 합성에 관한 연구)

  • Kim, Jun-Kyoung;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.17-23
    • /
    • 2006
  • The research on strong ground motions became important recently due to more severe requirement of seismic design for the domestic buildings and structures. The empirical Green's function method, which uses similarities between small and large earthquakes, was applied to make synthetic ground motions. That method was applied to the 2 earthquakes which occurred sequently in time within narrow area in Japan. The strong ground motions for the virtual earthquake (magnitude 6.5) were synthesized using those observed from the magnitude 4.7 earthquake. Then, the synthesized ground motions (acceleration, velocity, and displacement) were compared to those observed from real earthquake (magnitude 6.5). The results showed that the general shapes of waveforms in time domain and the Fourier spectrum In frequency domain from synthesized ground motions (acceleration, velocity, and displacement) are similar to the observed strong ground motions within acceptable degree. The peak values of 3 kinds of synthesized strong ground motions in time domain are comparable between the synthesized and the real strong ground motions, especially only about 9% difference in acceleration peak value.

On the Surge Motion of a Freely-Floating Sphere in a Plane Progressive Wave (규칙파(規則波)에 놓인 구(球)의 수평운동(水平運動)에 대(對)한 해석(解析))

  • Chan-Wook,Park;Hang-Shoon,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 1981
  • The surge motion of a freely-floating sphere in a regular wave is studied within the framework of a linear potential theory. The fluid is assumed to be perfect and only the steady-state harmonic motion in a water of infinite depth is considered. A velocity potential describing the fluid motion is decomposed into three parts; the incident wave potential, the diffraction potential and the radiation potential. In this paper the diffraction potential and the radiation potential are analysed by using multipole expansion method. Upon calculating pressures over the immersed surface of the sphere, the hydrodynamic forces are evaluated in terms of Froude-Krylov, diffraction, added mass and damping forces as functions of the frequency of the incident wave. Finally the frequency dependence of two pertinent parameters, the amplitude ratio and the phase lag between the motion of the sphere and that of the incident wave is derived from the equation of motion. As for numerical results the general tendency of the present calculation shows good agreement with Kim's work who also treated this problem utilizing the Green's function method.

  • PDF

Three-Dimensional Magnetotelluric Modeling Using Integral Equations (적분방정식을 이용한 3차원 지자기 지전류 모델링)

  • Kim, Hee Joon;Lee, Dong Sung
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.191-199
    • /
    • 1994
  • We have developed an algorithm based on the method of integral equations to simulate the magnetotelluric (MT) responses of three-dimensional (3-D) bodies in a layered half-space. The inhomogeneities are divided into a number of cells and are replaced by an equivalent current distribution which is approximated by pulse basis functions. A matrix equation is constructed using the electric Green's tensor function appropriate to a layered earth, and is solved for the vector current in each cell. Subsequently, scattered fields are found by integrating electric and magnetic Green's tensor functions over the scattering current About a 3-D conductive body near the earth's surface, interpretation using 2-D transverse electric modeling schemes can imply highly erratic low resistivities at depth. This is why these routines do not account for the effect of boundary charges. However, centrally located profiles across elongate 3-D prisms may be modeled accurately with a 2-D transverse magnetic algorithm, which implicitly includes boundary charges in its formulation. Multifrequency calculations show that apparent resistivity and impedance phase are really two complementary parameters. Hence, they should be treated simultaneously in broadband MT interpretation.

  • PDF

Biological Co2 Fixation to Antioxidant Carotenoids by Photosynthesis Using the Green Microalga Haematococcus pluvialis (광합성 녹색 미세조류 Haematococcus pluvialis를 이용한 이산화탄소 고정화 및 항산화성 카로티노이드 생산)

  • Kang, Chang Duk;Park, Tai Hyun;Sim, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • As one of the $CO_2$ reduction strategies, a biological method was proposed to convert $CO_2$ to useful biomass with antioxidant carotenoids by photosynthetic microorganisms. One of the photoautotrophs, Haematococcus pluvialis is a freshwater green microalga and accumulates the secondary carotenoid astaxanthin during induction of green vegetative cells to red cyst cells. In this study, $CO_2$ fixation and astaxanthin production using H. pluvialis was conducted by photoautotrophic culture in the $CO_2$ supplemented photo-incubator. Maximum growth rate of H. pluvialis was obtained at a 5% $CO_2$ environment on basic N and P conditions of NIES-C medium. The photoautotrophic induction consisted of 5% $CO_2$ supply and high light illumination promoted astaxanthin synthesis in H. pluvialis, yielding an astaxanthin productivity of $9.6mg/L{\cdot}day$ and a $CO_2$ conversion rate of $27.8mg/L{\cdot}day$ to astaxanthin. From the results the sequential photoautotrophic culture and induction process using H. pluvialis is expecting an alternative $CO_2$ reduction technology with a function of valuable biosubstance production.