본 논문에서는 비균일 양자화에 기반을 둔 영상의 질감분석에 널리 이용되고 있는 gray level co-occurrence matrix(GLCM)의 성능개선을 제안하였다. 여기서 비균일 양자화는 평균자승오차의 최소화를 위한 반복계산 기법인 Lloyd 알고리즘을 이용하였다. 이는 영상에서의 비균일 양자화 과정으로 얻어지는 비선형의 명암레벨을 GLCM의 생성에 이용함으로써 행렬의 차원을 감소시켜, GLCM의 생성과 질감특성 파라미터들의 계산에 따른 부하를 줄이기 위함이다. 제안된 기법을 30개의 $120{\times}120$ 픽셀의 256 그레이 레벨을 가진 영상들을 대상으로 적용하여 angular second moment, contrast, variance, entropy, correlation, inverse difference moment 6개의 질감특성 파라미터들을 각각 계산한 실험결과, 양자화를 수행하지 않은 256 레벨 GLCM에 비해 계산시간과 저장 공간에서 개선된 성능이 있음을 확인하였다. 특히 48, 32, 16, 12, 8의 비균일 양자화 레벨 중에서 16일 때 가장 우수한 질감특성분석 성능이 있음을 알 수 있었다.
According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.
저수구역은 계획된 홍수위에 의하여 둘러싸인 지역 혹은 댐의 계획된 홍수위 내에 있는 지역으로 정의된다. 본 연구에서는 저수구역 내 농경지를 탐지하기 위하여, 대표적인 기계학습 기법인 RF (Random Forest) 기반의 감독 분류 방법을 적용하였다. 저수구역 내의 농경지를 효과적으로 분류하기 위하여, 질감정보를 정량화하기 위한 대표적인 기법인 GLCM (Gray Level Co-occurrence Matrix)과 NDWI (Normalized Difference Water Index), NDVI (Normalized Difference Vegetation Index)를 추가적인 입력자료로 활용하였다. 특히, 질감정보를 생성하는데 사용된 윈도우 크기가 농경지의 분류 정확도에 미치는 영향을 분석하여, 저수구역 내의 농경지를 효과적으로 분류하기 위한 방법론을 제시하였다. 실험결과, UAV 영상을 이용한 분류결과를 통하여 취득된 다중분광영상과 NDVI, NDWI, GLCM 영상들을 이용하여 저수구역 내의 농경지를 효과적으로 탐지할 수 있음을 확인하였다. 또한, GLCM의 윈도우 크기가 분류정확도를 향상시키기 위한 중요한 변수임을 확인하였다.
본 논문에서는 도로 영상에서 검출된 자동차 영상을 종류별 분류를 위해 효과적인 질감 특징정보 기반의 자동차 종류별 분류 방안을 제안한다. 제안한 연구에서는 운전자의 안전운전지원을 위해 도로상에서 검출된 자동차 영역과 자신의 차량과 거리를 추정하기 위해 검출된 자동차의 종류를 인식할 필요가 있다. 즉, 인식된 자동차의 종류에 따라 차량 간 거리를 추정에 필요한 파라미터로 사용할 수 있기 때문이다. 따라서 본 연구에서는 검출된 자동차 영상들로부터 GLCM(gray-level co-occurrence matrix)의 7가지의 특징정보들을 추출하고 SVM을 사용하여 학습 한 후 자동차의 종류(승용, 화물, 버스)를 분류하는 방법을 제안한다. GLCM은 영상이 가진 질감 정보를 효율적으로 분석함으로써 영역의 밝기 변화 정도, 거침 정도, 픽셀 분포 정도 등을 표현하기 때문에 영상내의 포함된 영역을 분류하는데 효과적이다. 제안한 방법을 실제 자동차 규모별 분류에 적용한 결과 약 83%의 분류 성공률을 제시하였다.
본 논문에서는 효과적인 특징 추출을 기반으로 한 계층적인 검색 시스템을 제안한다. 조명 변화 및 영상의 이동과 크기 변화 그리고 회전과 같은 기하학적 변형에도 강한 속성을 가지는 영상 검색을 할 수 있도록 사용자의 질의 영상을 웨이블릿(Wavelet) 변환을 한 후 동일한 크기의 부영역으로 나누어진 저대역 부밴드에서 칼라의 특징으로 추출된 모멘트와 질감 특징인 GLCM(Gray Level Co-occurrence Matrix)의 Contrast를 사용해 유사 영상들의 1차 분류 과정을 거친다. 보다 정확한 검색을 수행하기 위해 1차 분류된 후보 영상들에 대해 고대역 부밴드에서 추출된 수평, 수직, 대각선 방향별 에너지(Energy)를 기반으로 한 에너지의 상대적인 성분 분포의 비교가 수행됨으로써 효율적인 영상 검색 결과를 보였다.
최근 의료 영상 분석(Medical Image Analysis)이나 영상 검색(Image Retrieval)을 위한 전처리(Preprocessing) 단계로 영상 분석(Image Analysis)에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상 검색에서 색상 성분(Color Component)의 활용 방법을 제안하고자 한다. 이미지를 검색하기 위해 색상 성분을 기반으로 하고, 색상(Color)을 분석하기 위한 기법으로 CLCM(Color Level Co-occurrence Matrix)과 통계적 기법을 이용하고 있다. CLCM은 기하학적 회전 변환(Geometric Rotate Transform)을 통해서 색상 성분을 3차원 공간상에 투영(Projection)하여 공간 관계(Spatial Relationship)로부터 나타나는 분포를 해석하는 방법으로, 본 논문에서 제안하는 주제이다. CLCM은 색상 모델에서 만들어지는 2차원 히스토그램을 지칭하며 색상 모델의 기하학적인 회전 변환을 통해서 생성된다. 그리고 이를 분석하기 위한 방법으로 통계 기법을 활용하고 있다. CLCM과 유사하게 2차원 분포도를 사용하는 GLCM(Gray Level Co-occurrence Matrix)[1]과 불변 모멘트(Invariant Moment)[2,3] 같은 알고리즘은 2차원적인 데이터를 해석하기 위하여 기본적인 통계 기법을 활용하고 있다. 하지만 GLCM과 불변 모멘트가 각각의 도메인에 최적화되어 있다 하더라도 공간 좌표상에 존재하는 불규칙적인 데이터를 완전히 해석할 수는 없다. 즉 GLCM과 불변 모멘트는 기초 통계 기법만을 사용하고 있기 때문에 추출된 특징들의 신뢰성이 낮다는 것이다. 본 논문에서는 이러한 단점을 보완하여 공간 관계를 해석함과 동시에 데이터의 가중치를 해석하기 위해 전형적인 다변량 통계에서 사용하는 주성분 분석(Principal Component Analysis)[4,5]을 이용하고 있다. 그리고 데이터의 정확도를 높이기 위해서 3차원 공간상에 색상 성분을 투영하여 이를 회전시키면서 데이터의 특성을 다각도에서 추출하는 방법을 제시한다.
조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.
지난 몇년간 유방 초음파영상을 이용한 신호 및 영상처리 기술과 자동 영상 최적화 기술, 유방 종괴 자동 검출 및 분류 기술 등, 컴퓨터 보조 진단(computer-aided diagnosis, CAD)을 활용하는 연구들이 활발히 진행되어지고 있다. 컴퓨터진단기술이 개발될수록 암의 조기 발견이 정확하고 빠르게 진행되어 건강 보험과 환자의 검사 빙용을 줄일 수 있고 조직 검사에 대한 불안감을 없앨 수 있을 것으로 기대된다. 본 논문에서는 GLCM(gray level co-occurrence matrix)을 사용하여 초음파 영상에서 종양의 정량적 분석을 진행하여 컴퓨터보조 진단에 활용 가능성을 실험하였다.
Recently, there has been an increase in the number of hazardous events, such as fire accidents. Monitoring systems that rely on human resources depend on people; hence, the performance of the system can be degraded when human operators are fatigued or tensed. It is easy to use fire alarm boxes; however, these are frequently activated by external factors such as temperature and humidity. We propose an approach to fire detection using an image processing technique. In this paper, we propose a fire detection method using multichannel information and gray level co-occurrence matrix (GLCM) image features. Multi-channels consist of RGB, YCbCr, and HSV color spaces. The flame color and smoke texture information are used to detect the flames and smoke, respectively. The experimental results show that the proposed method performs better than the previous method in terms of accuracy of fire detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.