• 제목/요약/키워드: Gravitational Field

검색결과 165건 처리시간 0.027초

GRACE 위성 중력자료를 활용한 한반도의 평균 수자원변화량 산정 (Estimation of Average Terrestrial Water Storage Changes in the Korean Peninsula Using GRACE Satellite Gravity Data)

  • 이상일;김준수;이상기
    • 한국수자원학회논문집
    • /
    • 제45권8호
    • /
    • pp.805-814
    • /
    • 2012
  • 대부분의 수문자료는 지상관측을 통해 얻어진다. 그러나 어떤 지역은 접근이 어렵거나 장기적인 관측에 어려움이 있기 때문에 지상관측을 대체하거나 보완할 새로운 방법이 요구된다. 시 공간적 한계를 극복할 수 있는 대안으로 미항공우주국 NASA에서 2002년 지구 중력장을 측정하는 GRACE(Gravity Recovery And Climate Experiment) 인공위성 자료가 존재한다. 본 연구에서는 GRACE Level-2 중력자료를 이용하여 공간평활화 반경별(0 km, 300 km, 500 km)로 한반도의 수자원변화량(GRACE-based TWSC)을 산정하였다. 산정된 결과의 타당성을 검증하기 위해, 지상 수문 관측자료를 이용한 수자원 변화량(land-based TWSC)과의 비교를 시도하였다. Land-based TWSC는 WAMIS의 강우량, 증발 산량 및 GLDAS의 유출량 자료를 이용해 계산하였다. GRACE-based TWSC와 land-based TWSC의 RMSE 검정 결과, 공간평활화 반경 500 km의 위성자료가 한반도에 가장 적합한 것으로 나타났다. 한반도의 월별 평균 TWSC는 0.986 cm/month로 나타났고, 이러한 큰 변화폭 때문에 안정적수자원 확보를 위한 대처 방안의 마련이 필요한 것으로 평가된다.

메타볼을 이용한 중력장내의 물방울 모델 (A Model for Water Droplet using Metaball in the Gravitation Force)

  • 유영중;정호열;조환규
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제4권1호
    • /
    • pp.79-88
    • /
    • 1998
  • 현재까지 불과 같은 유체를 렌더링하기 위한 많은 모델들이 개발되었다. 특히 메타볼은 단순성과 유동성의 특정으로 인해 눈이나 물과 같은 유체의 곡면을 모델링하기 위한 기법으로 많이 사용되어졌다. 본 논문은 중력장내에서 변형되는 물방울을 모델링하기 위한 새로운 방법을 제안한다. 이전의 연구에서 물방울은 단순한 메타볼에 의해 표현되었다. 물방울에 중력이 고려되지 않았기 때문에 렌더링 결과는 실제적인 물방울의 형태를 표현할 수 없었다. 우리는 기존의 메타볼에 실세계의 중력과 마찰력을 고려함으로서 평탄한 지면위에 놓여진 물방울의 형태를 생성하는 새로운 방법을 보여준다. 본 연구의 새로운 메타볼 모델은 이전의 메타볼이 가지는 스칼라 공간의 isosurface값을 중력을 고려한 벡터 공간으로 이동하여 얻어진다. 결과로서 광선 추적 기법과 물방울의 그림자 형성을 통해 실제적인 물방울의 형태를 렌더링한다.

  • PDF

전자 종이용 하전 입자의 부착력 분석 (Adhesion Force Analysis of Charged Particles for the E-paper)

  • 김승택;김형태;이상호;김종석
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.87-91
    • /
    • 2010
  • Charged micro-particles are widely used as the key components for many electrical applications such as an e-paper, a touch panel, a printer toner and an electronic ink. Among them, the e-paper is an emerging reflective type display using the charged particles that has the advantages of the extremely low power consumption and sunlight readability. To create images on the e-paper, we confine black positively-charged and white negatively-charged particles between bottom and top electrodes and selectively apply the electric field. When the Coulomb force by an applied electric field is greater than the adhesion force between the charged particle and the electrode, the particles' transition happens resulting in the change of color between black and white. Therefore, the adhesion force is a very important factor for designing and estimating e-paper's operation. In this study, we constructed a basic model for particle's transition and an adhesion force equation describing particle's transition with three different forces: electrostatic image force, Van der Waals force and gravitational force. The simulation results showed that the gravitational force is negligible for the interesting range for the charge and the radius, and the adhesion force can be strongly dependent on the particle's charge and radius.

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.343-347
    • /
    • 2004
  • The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

유한요소법을 이용한 단상변압기권선의 운동특성해석 (Movement Characteristics Analysis of Single Phase Transformer Winding Using Finite Element Method)

  • 최명준;김형석;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.104-106
    • /
    • 1996
  • In this paper, the dynamic motion driven by electromagnetic force of transformer windings is modeled and its characteristics are numerically analyzed. The electromagnetic field is obtained using the 2D finite element method taking account of anisotropic property of iron core, and the electromagnetic force on the transformer winding is calculated from Lorenz's force formula using the field distribution result. The system motion equation driven by electromagnetic force and gravitational force is numerically analyzed using the 4-order Runge-Kutta algorithm. Above analyses procedure is applied to a single-phase core-type transformer to validate its algorithm.

  • PDF

TIDAL TAILS OF GLOBULAR CLUSTERS

  • YIM KI-JEONG;LEE HYUNG MOK
    • 천문학회지
    • /
    • 제35권2호
    • /
    • pp.75-85
    • /
    • 2002
  • We present N-body simulations of globular clusters including gravitational field of the Galaxy, in order to study effects of tidal field systematically on the shape of outer parts of globular clusters using NBODY6. The Galaxy is assumed to be composed of central bulge and outer halo. We mvestigate the cluster of multi-mass models with a power-law initial mass function (IMF) starting with different initial masses, initial number of particles, different slopes of the IMF and different orbits of the cluster. We have examined the general evolution of the clusters, the shape of outer parts of the clusters, density profiles and the direction of tidal tails. The density profiles appear to become somewhat shallower just outside the tidal boundary consistent with some observed data. The position angle of the tidal tall depends on the location in the Galaxy as well as the direction of the motion of. clusters. We found that the clusters become more elongated at the apogalacticon than at the pengalacticon. The tidal tails may be used to trace the orbital paths of globular clusters.

자성유체를 이용한 Linear Pump의 설계와 제작 (Design of Magnetic Fluid Linear Pump)

  • 박관수;박상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.37-39
    • /
    • 1999
  • In this paper, the magnetic fluid linear pump is designed. Inside the small tube, magnetic fluid is shielded with thin rubber protector. The magnetic fluid activated by traveling pulses of magnetic field drags the water inside the pump. The iterative algorithm for the shape of magnetic fluid is presented by using nonlinear finite element method and Navier-Stokes equations. The computed curvature of fluid under the magnetic field and the gravitational force is agreed well with photograph image. The dimension and electric configurations of the magnetic linear pump are optimized and the results are compared with measurements.

  • PDF

7-Dimensional Telescope (7DT) for multi-messenger astronomy

  • Im, Myungshin;Lee, Hyung Mok;Jung, Jae-Hun;Kim, Chunglee;Shafieloo, Arman;Uhm, Z. Lucas
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.52.4-52.4
    • /
    • 2021
  • The 7-dimensional Telescope (7DT) is an innovative multiple telescope system that can perform a rapid identification of optical counterparts of gravitational-wave (GW) sources and a wide variety of other astronomical projects. This telescope is being developed as a part of the recently approved National Challenge program, the GW Universe project, with a full operation planned at the end of 2023. The word 7-dimension stands for x, y, z positions, the radial velocity, the time, the wavelength, and the flux of astronomical sources, implying the telescope's capability of performing time-series wide-field, IFU-type spectroscopic observations. The 7DT is composed of about twenty 0.5-m wide-field telescopes, and it can obtain spectral-imaging data at 40 different wavelengths to the depth of 20 AB mag with 3 min exposure for a given epoch. In this talk, we will introduce the telescope system, and outline its scientific capabilities with an emphasis on multi-messenger astronomy and a few other key science topics.

  • PDF

An Analysis of the Momentum Effect by Students' Characteristics and the Modes of Representation Patterns

  • Kim, Jun-Tae;Kwon, Jae-Sool
    • 한국과학교육학회지
    • /
    • 제21권5호
    • /
    • pp.841-854
    • /
    • 2001
  • The purpose of this study was to find the effect of these variables on the duration of the momentum effect. To examine the momentum effect for gravitational field concepts, an intensive time series design was used. We collected data every day except Sundays and holidays for 50 days; 5 days for baseline, 30 days for intervention, and 15 days for the follow up We adopted cognitive levels and styles as students characteristics and two item characteristics(quantity versus quality, and word versus picture) as the item representation patterns. In this study, the momentum effect was influenced by students characteristics and item representation patterns. The results showed that two variables, cognitive style and quantity/quality, were the most influential factors for the duration of momentum effect. Field independent students showed a longer duration than field dependent students did. In addition, students showed a longer duration in quality items than in quantity items. However, students cognitive levels(formal or preformal) and word/picture presentations seemed to have relatively weak effect on the duration of the momentum effect.

  • PDF

On the Chemical Evolution of Collapsing Starless Cores

  • Seo, Young-Min;Lee, Jeong-Eun;Kim, Jong-Soo;Hong, Seung-Soo
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • In order to understand internal dynamics of starless cores, molecular line emissions are usually observed. From profiles of the molecular lines, internal motions of starless cores have been deduced using a simple radiative transfer model such as the two-layer model (Myers et al.1996). This brings complexities arising from the chemical evolution. The motivation of this study is to follow the chemical evolution of a starless core that goes through gravitational contraction. For this purpose, we have performed hydrodynamical simulations with a marginally unstable Bonnor-Ebert sphere as an initial condition. We follow the chemical evolution of this core with changing conditions such as the chemical reaction rate at the dust surface and the strength of radiation field that penetrate into the core. At the core center, the molecules suffer from a higher degree of molecular depletion on the dust covered by ice rather than on the bare silicate dust. The stronger radiation field dissociates more molecules at the core envelope. From analysis on the line profile using the two-layer model, we found that the speed of inward motion deduced from the HCN F = 2-1 line adequately traces the true infall speed, when the dust is covered by ice and the core is exposed to the diffuse interstellar radiation field. Under different conditions, the two-layer model significantly underestimate the infall speed.

  • PDF