DOI QR코드

DOI QR Code

TIDAL TAILS OF GLOBULAR CLUSTERS

  • YIM KI-JEONG (Astronomy Program, SEES, Seoul National University) ;
  • LEE HYUNG MOK (Astronomy Program, SEES, Seoul National University)
  • Published : 2002.06.01

Abstract

We present N-body simulations of globular clusters including gravitational field of the Galaxy, in order to study effects of tidal field systematically on the shape of outer parts of globular clusters using NBODY6. The Galaxy is assumed to be composed of central bulge and outer halo. We mvestigate the cluster of multi-mass models with a power-law initial mass function (IMF) starting with different initial masses, initial number of particles, different slopes of the IMF and different orbits of the cluster. We have examined the general evolution of the clusters, the shape of outer parts of the clusters, density profiles and the direction of tidal tails. The density profiles appear to become somewhat shallower just outside the tidal boundary consistent with some observed data. The position angle of the tidal tall depends on the location in the Galaxy as well as the direction of the motion of. clusters. We found that the clusters become more elongated at the apogalacticon than at the pengalacticon. The tidal tails may be used to trace the orbital paths of globular clusters.

Keywords

References

  1. Aarseth, S. J. 1999, From NBODYl to NB0DY6: The growth of an industry, PASP, 111, 1333 https://doi.org/10.1086/316455
  2. Aarseth, S. J., Henon M., & Wielen R. 1974, A comparison of numerical methods for the study of star cluster dynamics, A&A, 37, 183
  3. Ahmad A., & Cohen L. 1973, Random force in gravitational systems, APJ, 179, 885 https://doi.org/10.1086/151926
  4. Caldwell, J. A. R., & Ostriker, J. P. 1981, The mass distribution within our Galaxy - A three component model, ApJ, 251, 61 https://doi.org/10.1086/159441
  5. Gnedin, O. Y., Lee, H. M., & Osthker, J. P. 1999, Effects of tidal shocks on the evolution of globular clusters, ApJ, 522, 935 https://doi.org/10.1086/307659
  6. H$`{e}$non, M., 1961, Sur I'evolution dynamique des amas globulaires, Ann. d'Astrophys., 24, 369
  7. Kim, E., Einsel, C., Lee, H. M., Spurzem, R., & Lee, M. G., 2002, Dynamical evolution of rotating stellar systems -II. Post-collapse, equal mass system, MNRAS, in press
  8. Kim, Y. K., & Oh, K. S. 1999, Dynamical evolution of the multi-mass component globular clusters under the tidal interaction with the Galaxy, JKAS, 32, 17
  9. Kim, S. S., Morris M., & Lee, H. M. 1999, ApJ, Evaporation of compact young clusters near the Galactic Center, 525, 228 https://doi.org/10.1086/307892
  10. Lee, K. H., et al. Wide field VI CCD photometry of globular cluster M92, 2002,, in preparation
  11. Lee, C. W., Lee, H. M., Ann, H. B., & Kwon, K. H., 1999, Smoothed particle hydrodynamic simulations of Galactic gaseous disk with bar: Distribution and kinematic structure of molecular clouds toward the Galactic Center, ApJ, 513, 242 https://doi.org/10.1086/306846
  12. Lee, H. M..1990, Tidal Densities of Globular Clusters and the Galactic Mass Distribution, JKAS, 23, 97
  13. Lee, H. M., &: Goodman, J., 1995, Influence of the stellar mass function of the evaporation rate of tidally limited postcollapse globular clusters, ApJ, 443, 109 https://doi.org/10.1086/175506
  14. Lee, H. M., & Ostriker, J. P., 1986, The evolution and final disintegration of spherical stellar systems in a steady galactic tidal field, ApJ, 332, 123
  15. Leon S., Meylan G., & Combes F. 2000, Tidal tails around 20 Galactic globular clusters. Observational evidence for gravitational disk/bulge shocking, A&A, 359, 907
  16. MaKINO, J., 1991, A Modified Aarseth Code for GRAPE and Vector Processors, PASJ, 43, 859
  17. Oh K. S., & Lin, D. N. C. 1992, Tidal evolution of globular clusters. II - The effects of Galactic tidal field and diffusion, ApJ, 386, 519 https://doi.org/10.1086/171037
  18. Spitzer, L. Jr. 1987, Dynamical Evolution of Globular Clusters (Princeton: Princeton University Press)
  19. Takahashi K., &; Lee, H. M. 2000, Evolution of multimass elobular clusters in the Galactic tidal field with the effects of velocity amsotropy, MNRAS, 316, 671 https://doi.org/10.1046/j.1365-8711.2000.03594.x
  20. Takahashi K., & Portgies Zwart, 1998, The disruption of globular star clusters in the Galaxy: A comparative analysis between Fokker-Planck and N-body models, ApJ, 503, L49 https://doi.org/10.1086/311529
  21. Weinbere, M. D. 1994, Adiabatic invariants in stellar dy-namics. 2: Gravitational shocking, AJ, 108, 1403 https://doi.org/10.1086/117162

Cited by

  1. Unravelling the escape dynamics and the nature of the normally hyperbolic invariant manifolds in tidally limited star clusters vol.465, pp.1, 2017, https://doi.org/10.1093/mnras/stw2517
  2. Tidal Tails around Globular Clusters: Are They a Good Tracer of Cluster Orbits? vol.659, pp.2, 2007, https://doi.org/10.1086/512114
  3. The evolution of two stellar populations in globular clusters vol.492, pp.1, 2008, https://doi.org/10.1051/0004-6361:200810275
  4. A WIDE-FIELD PHOTOMETRIC SURVEY FOR EXTRATIDAL TAILS AROUND FIVE METAL-POOR GLOBULAR CLUSTERS IN THE GALACTIC HALO vol.139, pp.2, 2010, https://doi.org/10.1088/0004-6256/139/2/606
  5. Mass-Loss Timescale of Star Clusters in an External Tidal Field. II. Effect of Mass Profile of Parent Galaxy vol.62, pp.5, 2010, https://doi.org/10.1093/pasj/62.5.1215
  6. Effects of external tidal field on the evolution of the outer regions of multi-mass star clusters vol.367, pp.2, 2006, https://doi.org/10.1111/j.1365-2966.2006.09972.x
  7. Clumpy Substructures in Globular Cluster Tidal Tails vol.91, pp.1-2, 2005, https://doi.org/10.1007/s10569-005-3221-y
  8. Wide-Field CCD Photometry of the Globular Cluster M92 vol.126, pp.2, 2003, https://doi.org/10.1086/376738
  9. Wide-Field Stellar Distributions around the Remote Young Galactic Globular Clusters Palomar 3 and Palomar 4 vol.126, pp.2, 2003, https://doi.org/10.1086/375907