• Title/Summary/Keyword: Grass temperature

Search Result 169, Processing Time 0.027 seconds

An Experimental Study of Surface Materials for Planting of Building Surface by the Radiant Heat Balance Analysis in the Summer (하절기 실험을 통한 건물녹화용 피복재료의 복사수지 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.71-80
    • /
    • 2010
  • This study carried out to understand the thermal characteristics of various surface material which compose the city through the observation in the summer. To examine passive cooling effect of planting of building, it is arranged four different materials that is natural grass, grass block, concrete slab and artificial grass. The results of this study are as follows; (1) Natural grass and grass block show the lower surface temperature because of the structures of leaf can do more thermal dissipation effectively. (2) There is little surface temperature between artificial grass and concrete. But there is little high surface temperature difference between natural grass and concrete because of latent heat effect. (3) The concrete can play a role of the tropical nights phenomenon as high heat capacity of concrete compare with other materials. (4) It is nearly same color in artificial grass and natural grass but there is large difference between natural grass and artificial grass at albedo. There is different albedo in near infrared ray range. (5) A short wave radiation gives more effect at the globe temperature than long wave radiation. (6) The artificial turf protected the slab surface temperature increase in spite of thin and low albedo materials.

EFFECT OF ENVIRONMENTAL TEMPERATURE AND ADDITION OF MOLASSES ON THE QUALITY OF NAPIER GRASS (PENNISETUM PURPUREUM SCHUM.) SILAGE

  • Yokota, H.;Okajima, T.;Ohshima, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.377-382
    • /
    • 1991
  • The effect of molasses addition and hot temperature on the ensiling characteristics of napier grass (Pennisetum purpureum Schum.) were studied. Napier grass was harvested five times at intervals from 22 to 39 days and each harvest was divided into two equal portions. The half portion was ensiled directly and the other half was ensiled after mixing with molasses into polyethylene bag silos of 15 kg capacity. Molasses was added at the rate of 4% of fresh weight of the grass. One half of the each treatment was conserved at a room of $40^{\circ}C$ for a month and then moved to an ambient temperature room. The other half was kept at ambient temperature for the whole experimental duration. The silages were opened 3 to 7 months after ensiling. Addition of molasses enhanced lactic acid fermentation by increasing lactic acid content and reducing pH value, ammonia nitrogen and acetic, propionic and butyric acid contents of the silages in both temperature treatments. Enhanced temperature increased pH value and decreased acetic, propionic and butyric acids.

Mitigating the Urban Heat Island Phenomenon Using a Water-Retentive Artificial Turf System

  • Tebakari, Taichi;Maruyama, Tatsuya;Inui, Masahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.91-100
    • /
    • 2010
  • To investigate the thermal properties of a water-retentive artificial turf system (W-ATS), we estimated hydrologic parameters including thermal conductivity, heat capacity, and surface albedo for both the W-ATS and natural grass. We used a model experiment to measure surface temperature and evaporation for both the W-ATS and natural grass. We found that the W-ATS had lower thermal conductivity than natural grass did, and it was difficult for the W-ATS to convey radiant heat to the ground. Compared to natural grass, the W-ATS also had lower heat capacity, which contributed to its larger variation in surface temperature: the W-ATS had higher surface temperatures during daytime and lower surface temperatures during nighttime. The albedo of the W-ATS was one-quarter that of natural grass, and reflected shortwave radiation from the W-ATS surface was lower than that from the surface of natural grass. These results indicate that the W-ATS caused the soil temperature to increase. Furthermore, evaporation from the W-ATS was one-quarter the value of evapotranspiration from natural grass.

  • PDF

A Quantitative Study on the Effect of Temperature Control by a Shade Tree and the Lawn Area (식물의 온도 완화효과에 관한 기초적 연구)

  • 안계복;김기선
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 1986
  • The purpose of this study is to investigate the effect of temperature control by a shade tree and the lawn area. In this investigation, we find out that artificial-lawn, concerte, and exposed soil are more higher temperature than covered with plant materials. The results of the measurement may to summerized as follows; 1) Low-temperature effects of zoysia japonica is more controlled by condition of growth than leaf length of grass. Surface temperature make 0.7$^{\circ}C$ difference between long grass (15cm), and short grass (5cm), but make 5$^{\circ}C$ difference between good growth grass (230/10$\textrm{cm}^2$) and bad growth grass (80/10$\textrm{cm}^2$). 2) The surface temperature of the lawn area is 40.5$^{\circ}C$ lower on a maxinum than that of the artificial lawn (July 28, 1985). During the day of summer, shade area under the shade tree is 0.9$^{\circ}C$ lower then lawn area surface temperature, 6.9$^{\circ}C$ lower than bad growth lawn, 10.3$^{\circ}C$ lower than exposed soil, and 18$^{\circ}C$ lower than concrete surface temperature. 3) Natural irrigation effect on the surface temperature fluctuation. But this effect is changed by compositions of ground materials and time-lapse. 4) Sunny day is more effective than cloud day. 5) In summer season, surface temperature make a difference compare to temperature of 0.5-1.5m height from ground : Surface temperature is 3.4$^{\circ}C$ lower at the lawn area (11 a.m.), 4.2$^{\circ}C$ lower at the shade area the shade tree, 12.7$^{\circ}C$ higher at the concrete area (3p.m.), 38.8$^{\circ}C$ higher at the artificial lawn (2p.m.) 6) According to compositions of ground materials and season have specific vertical temperature distribution curve. 7) In summer season, temperature distribution of 0.5-1.5m hight at the shade tree is 4.8-5.7$^{\circ}C$ lower than concrete area (noon-3p.m.)

  • PDF

Temperature Dependent of Mitotic Interval for Grass Puffer, Takifugu niphobles

  • Ko, Min Gyun;Lee, Hyo Bin;Gil, Hyun Woo;Kang, Shin Beom;Park, In-Seok;Kim, Dong Soo
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.111-117
    • /
    • 2018
  • The objective of this study was to determine the mitotic intervals (${\tau}_0$) of two consecutive cell divisions and synchronous embryonic cleavage in grass puffer, Takifugu niphobles at different water temperatures (18, 20, 22, and $24^{\circ}C$). The color of the fertilized egg was light yellowish. The egg type was demersal and unadhesive. Egg weight was $0.09{\pm}0.002mg$. The sizes of unfertilized eggs were smaller than fertilized eggs in major axis and minor axis at $20^{\circ}C$ (p<0.05). The size of the fertilized egg of $18^{\circ}C$ water temperature group at the blastodisc stage was the smallest (p<0.05), but no significant differences were observed in the other water temperatures group except $18^{\circ}C$ water temperature group (p>0.05). The first cleavage stages at 18, 20, 22, and $24^{\circ}C$ were at 75, 90, 105, and 120 mins, respectively. As water temperature was increased, embryonic development and formation time of the first cleavage furrow were accelerated. There were negative correlation between ${\tau}_0$ and water temperature for grass puffer (Y=-1.225X+70.05, $R^2=0.988$, n=10, where Y was ${\tau}_0$ and X was temperature). This study confirmed that successful hatching of grass puffer was related to water temperature. Chromosome manipulation will be helpful for this species using cleavage frequency and ${\tau}_0$.

Growth of Grass and Control of temperature of Planting Concrete for Roof Using Recycled Aggregate (재생골재를 이용한 옥상식재용 콘크리트의 잔디생육과 열환경조정효과)

  • 이상태;김정진;황정하;김진선;오선교;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.237-242
    • /
    • 2001
  • The objective of this study is to investigate growth of grass planted with planting concrete using recycled aggregste. Planting concrete blocks are constructed on the roof of existing building. Temperature variation according to planting concrete method are also investigate. According to test results, it shows that grass grows very well under planting concrete method. When planting concrete method is applied, it brings about temperature reducing effects about 1~$2^{\circ}C$ at inner part of the buildings at cooling required period compared to that with existing roof, and at heating required period temperature insulating effects about 2~$4^{\circ}C$.

  • PDF

Influence of Playground Land Covers on the Human Thermal Sensation (운동장 포장재료가 인간 열환경에 미치는 영향)

  • Hyun, Cheolji;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.12-21
    • /
    • 2019
  • In order to investigate the effect of various pavement materials (artificial grass, natural grass, and clay sand) on the human thermal environment, the microclimate data in early autumn (air temperature, humidity, wind speed, and shortwave and longwave radiation) were measured and compared on each surface. The mean air temperature, humidity and wind speed of the pavement materials did not differ significantly and showed the greatest difference in the mean radiant temperature. Natural grass, which has the highest albedo, has the highest amount of shortwave radiation. The artificial turf had the highest surface temperature and the highest amount of longwave radiation. In the human thermal environment index PET, artificial grass > clay sand > natural grass. Natural grass had a maximum 2/3 level lower and a mean 1/2 level lower in PET as compared to artificial grass. The clay sand pavement had a maximum 2/3 level lower and a mean 1/3 level lower than the artificial grass. Natural grass had a maximum 1/3 level lower than the clay sand pavement. Their UTCIs showed smaller differences than the PETs. Therefore, it is necessary to carefully choose materials from the planning stage when designing outdoor spaces, including playgrounds.

A Study on the Effect of Air Temperature and Ground Temperature Mitigation from Several Arrangements of Urban Green (도시녹지의 기온 및 지온 완화효과에 관한 연구)

  • 이은엽;문석기;심상렬
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.1
    • /
    • pp.65-78
    • /
    • 1996
  • To study the temperature mitigation effects from urban green, several arrangements of green spaces were selected and air/ground temperatures were measured in Chongju city area. The results of this study can be summarized as follows; 1. It was found that the natural ground materials effect more affirmatively on the air and ground temperature than artificial ones do. The best results were recorded from the grass surface presenting highest mitigation effect and lowest daily temperature deviation. 2. Temperature mitigation effects of Tree-Shade on ground are different from season, ground material, and crown-size. Them most effects were found in interlocking block, the least in grass surface among recorded 2 seasons and 3 materials. In case of air temperature, the effects were more or less decreased in most cases. 3. From the survey, it was confirmed that the smaller urban greens can do its role of temperature mitigation as larger ones does. In case of this study, the effect was recorded about 2.3$^{\circ}C$.

  • PDF

The Weather Characteristics of Frost Occurrence Days for Protecting Crops against Frost Damage (서리 피해 방지를 위한 서리 발생일의 기상 특성에 대한 연구)

  • Kwon, Young-Ah;Lee, Hyo-Shin;Kwon, Won-Tae;Boo, Kyung-On
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.824-842
    • /
    • 2008
  • The main objective of the study was to analyze the weather conditions of frost occurrence for protecting crops against frost damage in Korea. The primary data used for the analysis of meteorological characteristics of frost occurrence days are the airmass pattern, minimum temperature, grass minimum temperature, daily temperature range, relative humidity, minimum relative humidity, mean wind speed in autumn and spring. Frost often occurs when the migratory anticyclone passes the southwest of Korea. The importance of grass minimum temperature measurements for agricultural purposes has previously been recognized. The grass minimum thermometer is capable of detecting ground frosts which are often not recorded by the minimum thermometer. The minimum temperature of frost occurrence days is above $0^{\circ}C$ in the coastal area, but the grass minimum temperature of frost occurrence days is below $0^{\circ}C$ in the whole area. The daily temperature of frost occurrence days is about 9 to $12^{\circ}C$ in the coastal area and is over $14^{\circ}C$ in the inland area. The minimum relative humidity of frost occurrence days is about 30 to 50%. The mean wind speed of frost occurrence days is less than 2m/sec.

Thermal Environment Characteristics of Permeable Block Pavements for Landscape Construction (조경용 투수성 블록 포장의 열환경 특성)

  • Han Seung-Ho;Ryu Nam-Hyong;Kang Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.18-25
    • /
    • 2006
  • This study aims to measure and to analyze the thermal environment characteristics of the various permeable pavement materials such as grass pavement (GREEN BLOCK PARK), stone and grass pavement (GREEN BLOCK STEP), stone pavement (GREEN BLOCK MOSAIC) and wood pavement (WOOD BLOCK) under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, changes of the temperature on each pavement layer, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 5, 2005, $34.0^{\circ}C$) of the you. Some of main findings are: 1) The heat environment was worse on the wood pavements than on the stone pavement. This is mainly due to the low albedo of the wood pavements (0.37) while the albedo value of stone pavements is 0.41. Small heat capacity of the wood pavements also contributes to this difference. 2) The heat environment was worse on the stone pavements than on the turf pavements. This was mainly due to the evapotranspiration of the plant growth layer of the turf pavements. 3) The peak surface temperature was the highest on the wood pavements ($56.1^{\circ}C$). The peak surface temperatures on the stone pavements, the stone-grass pavements and the grass pavements were $43.1^{\circ}C,\;40.1^{\circ}C\;and\;37.9^{\circ}C$, respectively. 4) To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.