• Title/Summary/Keyword: Graphite oxide

Search Result 160, Processing Time 0.03 seconds

Effects of Oxyfluorinated Graphene Oxide Flake on Mechanical Properties of PMMA Artificial Marbles (함산소불소화 처리된 그래핀 산화물 플레이크가 PMMA 인조대리석의 기계적 물성에 미치는 영향)

  • Kim, Hyo-Chul;Jeon, Son-Yeo;Kim, Hyung-Il;Lee, Young-Seak;Hong, Min-Hyuk;Choi, Ki-Seop
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.251-261
    • /
    • 2012
  • The nanocomposites containing graphene oxide flakes were prepared in order to improve the mechanical properties of artificial marbles based on poly(methyl methacrylate)(PMMA) matrix. Graphene oxide flakes were prepared from graphite by oxidation with Hummers method followed by exfoliation with thermal treatment. Surface of graphene oxide flakes were modified with oxyfluorination in various oxygene:fluorine compositions to improve the interfacial compatibility. The nanocomposites containing graphenes modified with oxyfluorination in the oxygen content of 50% and higher showed the significant increase in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fractured surface showed the improved interfacial adhesion between PMMA matrix and the graphenes which were properly treated with oxyfluorination. The mechanical properties of nanocomposite were deteriorated by increasing the content of graphene above 0.07 phr due to the nonuniform dispersion of graphenes.

Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology (라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Chung, Dae-Won;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.468-474
    • /
    • 2015
  • Electrically conductive polymer nanocomposites were prepared by the inclusion of graphene-based nanofillers. Graphene oxide (GO) and reduced graphene oxide wrapped by poly(styrene sulfonate) (PSS-RGO) were used as nanofillers to make good dispersion with the aqueous dispersion of polystyrene (PS) particles. GO sheets were synthesized by the modified Hummers' method from graphite, and PSS-RGO sheets were prepared by the reduction of GO-dispersed PSS solution with hydrazine monohydrate. Morphology and properties of PS/GO and PS/PSS-RGO nanocomposites via latex technology were investigated. Both nanofillers showed well dispersed morphology in PS matrix. Rheological and electrical percolation thresholds were 0.28 and 0.51 wt% for GO, and 0.50 and 1.01 wt% for PSS-RGO respectively. It is speculated that PS/GO nanocomposites showed better conductivity than PS/PSS-RGO counterparts due to the partial recovery of GO by thermal reduction during molding.

A new nano-composite carbon ink for disposable dopamine biosensors (나노컴포지트 카본 잉크가 전착된 일회용 도파민 바이오센서)

  • Dinakaran, T.;Chang, S.-C.
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • A new nano-composite carbon ink for the development of disposable dopamine (DA) biosensors based on screen-printed carbon electrodes (SPCEs) is introduced. The method developed uses SPCEs coupled with a tyrosinase modified nano-composite carbon ink. The ink was prepared by an “in-house” procedure with reduced graphene oxide (rGO), Pt nanoparticles (PtNP), and carbon materials such as carbon black and graphite. The rGO-PtNP carbon composite ink was used to print the working electrodes of the SPCEs and the reference counter electrodes were printed by using a commercial Ag/AgCl ink. After the construction of nano-composite SPCEs, tyrosinase was immobilized onto the working electrodes by using a biocompatible matrix, chitosan. The composite of nano-materials was characterized by X-ray photoelectron spectroscopy (XPS) and the performance characteristics of the sensors were evaluated by using voltammetric and amperometric techniques. The cyclic voltammetry results indicated that the sensors prepared with the rGO-PtNP-carbon composite ink revealed a significant improvement in electro-catalytic activity to DA compared with the results obtained from bare or only PtNP embedded carbon inks. Optimum experimental parameters such as pH and operating potential were evaluated and calibration curves for dopamine were constructed with the results obtained from a series of amperometric detections at −0.1 V vs. Ag/AgCl. The limit of detection was found to be 14 nM in a linear range of 10 nM to 100 µM of DA, and the sensor’s sensitivity was calculated to be 0.4 µAµM−1cm−2.

Influence of Citric Acid on the Metal Release of Stainless Steels

  • Mazinanian, N.;Wallinder, I. Odnevall;Hedberg, Y.S.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.166-171
    • /
    • 2015
  • Knowledge of how metal releases from the stainless steels used in food processing applications and cooking utensils is essential within the framework of human health risk assessment. A new European standard test protocol for testing metal release in food contact materials made from metals and alloys has recently been published by the Council of Europe. The major difference from earlier test protocols is the use of citric acid as the worst-case food simulant. The objectives of this study were to assess the effect of citric acid at acidic, neutral, and alkaline solution pH on the extent of metal release for stainless steel grades AISI 304 and 316, commonly used as food contact materials. Both grades released lower amounts of metals than the specific release limits when they were tested according to test guidelines. The released amounts of metals were assessed by means of graphite furnace atomic absorption spectroscopy, and changes in the outermost surface composition were determined using X-ray photoelectron spectroscopy. The results demonstrate that both the pH and the complexation capacity of the solutions affected the extent of metal release from stainless steel and are discussed from a mechanistic perspective. The outermost surface oxide was significantly enriched in chromium upon exposure to citric acid, indicating rapid passivation by the acid. This study elucidates the effect of several possible mechanisms, including complex ion- and ligand-induced metal release, that govern the process of metal release from stainless steel under passive conditions in solutions that contain citric acid.

Optical Properties of ZnO Soccer Ball Structures by Using Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Kim, Do-Yeob;Yim, Kwang-Gug;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.248-248
    • /
    • 2011
  • ZnO was grown on a Au-catalyzed Si(100) substrate by using a simple vapor phase transport (VPT) with a mixture of zinc oxide and graphite powders. The ZnO grown at 800$^{\circ}C$ had a soccer ball structure with diameters of <500 nm. The ZnO soccer ball structure was, for the first time, observed in this work. The optical properties of the ZnO soccer balls were investigated by photoluminescence (PL). In the room-temperature (RT) PL of the ZnO soccer balls, a strong near-band-edge emission (NBE) and a weak deep-level emission were observed at 3.25 and 2.47 eV (green emission), respectively. The weak deep-level emission (DLE) at around 2.47 eV (green emission) is caused by impurities and structural defects. The FWHM of the NBE peak from the ZnO soccer balls was 110 meV. In addition, the PL intensity ratio of the NBE to DLE was about 4. The temperature-dependent PL was also carried out to investigate the mechanism governing the quenching behavior of the PL spectra.

  • PDF

Photoluminescence Studies of ZnO Nanorods Grown by Vapor Phase Transport (기상이동법으로 성장한 산화아연 나노막대의 포토루미네슨스 분석)

  • Kim, Soaram;Cho, Min Young;Nam, Giwoong;Kim, Min Su;Kim, Do Yeob;Yim, Kwang Gug;Leem, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.818-822
    • /
    • 2011
  • ZnO nanorods were grown on Au-coated Si substrates by vapor phase transport (VPT) at the growth temperature of $600^{\circ}C$ using a mixture of zinc oxide and graphite powders as source material. Au thin films with the thickness of 5 nm were deposited by ion sputtering. Temperature-dependent photoluminescence (PL) was carried out to investigate the optical properties of the ZnO nanorods. Five peaks at 3.363, 3.327, 3.296, 3.228, and 3.143 eV, corresponding to the free exciton (FX), neutral donor bound exciton ($D^{\circ}X$), first order longitudinal optical phonon replica of free exciton (FX-1LO), FX-2LO, and FX-3LO emissions, were obtained at low-temperature (10 K). The intensity of these peaks decreased and their position was red shifted with the increase in the temperature. The FX emission peak energy of the ZnO nanorods exhibited an anomalous behavior (red-blue-red shift) with the increase in temperature. This is also known as an "S-shaped" emission shift. The thermal activation energy for the exciton with increasing temperature in the ZnO nanorods is found to be about 26.6 meV; the values of Varshni's empirical equation fitting parameters are = $5{\times}10^{-4}eV/K$, ${\beta}=350K$, and $E_g(0)=3.364eV$.

Effect of Surface Treatments of Stainless Steels on Oxidation Behavior Under Operating Condition of IT SOFC Interconnect (IT SOFC 인터커넥터 구동 조건에서의 스테인레스 소재의 산화거동에 미치는 표면전처리의 영향)

  • Moon, Min-Seok;Woo, Kee-Do;Kim, Sang-Hyuk;Yoo, Myung-Han
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Solid oxide fuel cells (SOFCs) have many attractive features for widespread applications in generation systems. Recently, stainless steels have attractive materials for metallic bipolar plate because metallic bipolar plates have many benefits compared to others such as graphite and composite bipolar plates. SOFC operates on high temperature of about $800{\sim}1000^{\circ}C$ than other fuel cell systems. Thus, many studies have attempted to reduced the operation temperature of SOFC to about $600{\sim}800^{\circ}C$, which is the intermediate temperature (IT) of SOFC. Low cost and high-temperature corrosion resistance are very important for the practical applications of SOFC in various industries. In this study, two specimens, 304 and 430 stainless steels with and without different pre-surface treatments on the surface were investigated. And, specimens were exposed at high temperature in the box furnace under oxidation atmosphere of $800^{\circ}C$. Oxidation behavior have been investigated with the materials exposed at different times (100 hrs and 400 hrs) by SEM, EDS and XRD. By increasing exposure time, the amount of metal oxide increased in the order like; STS304 < STS430 and As-received < As-polished < Sand-blast specimens.

Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries (리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막)

  • So-Young Joo;Yunju Choi;Woo-Sung Choi;Heon-Cheol Shin
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method (전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구)

  • Lee, H.M.;Park, J.H.;Hong, S.M.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.

STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

  • Song, Kee-Chan;Lee, Han-Soo;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.131-144
    • /
    • 2010
  • The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. The process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes and related innovative technologies. As for the electroreduction step, a stainless steel mesh basket was applied for adaption of granules of uranium oxide. This basket was designed for ready handling and transfer of feed material. A graphite cathode was used for the continuous collection of uranium dendrite in the electrorefining system. This enhances the throughput of the electrorefiner. A particular mesh type stirrer was designed to inhibit uranium spill-over at the liquid Cd crucible. A residual actinide recovery system was also tested to recover TRU tracer. In order to reduce the waste volume, a crystallization method is employed for Cs and Sr removal. Experiments on the unit processes were tested successfully, and based on the results, engineering-scale equipment has been designed for the PRIDE (PyRoprocess Integrated inactive DEmonstration facility).