DOI QR코드

DOI QR Code

Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries

리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막

  • So-Young Joo (School of Materials Science and Engineering, Pusan National University) ;
  • Yunju Choi (School of Materials Science and Engineering, Pusan National University) ;
  • Woo-Sung Choi (School of Materials Science and Engineering, Pusan National University) ;
  • Heon-Cheol Shin (School of Materials Science and Engineering, Pusan National University)
  • 주소영 (부산대학교 재료공학과) ;
  • 최윤주 (부산대학교 재료공학과) ;
  • 최우성 (부산대학교 재료공학과) ;
  • 신헌철 (부산대학교 재료공학과)
  • Received : 2022.01.10
  • Accepted : 2023.02.14
  • Published : 2023.02.28

Abstract

Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. T. Zhang, L. Fu, J. Gao, Y. Wu, R. Holze, H. Wu, Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery, J. Power Sources, 174 (2007) 770-773. https://doi.org/10.1016/j.jpowsour.2007.06.231
  2. S. Han, B. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater., 15 (2005) 1845-1850. https://doi.org/10.1002/adfm.200500243
  3. K. Peng, J. Jie, W. Zhang, S. T. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Appl. Phy. Lett., 93 (2008) 033105.
  4. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 11 (2011) 2949-2954. https://doi.org/10.1021/nl201470j
  5. H. H. Li, Z. Y. Li, X. L. Wu, L. L. Zhang, C. Y. Fan, H. F. Wang, X. Y. Li, K. Wang, H. Z. Sun, J. P. Zhang, Shale-like Co3O4 for high performance lithium/sodium ion batteries, J. Mater. Chem. A, 4 (2016) 8242-8248. https://doi.org/10.1039/C6TA02417C
  6. D. Yang, J. Zhu, X. Rui, H. Tan, R. Cai, H. E. Hoster, D. Y. Yu, H. H. Hng, Q. Yan, Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries, ACS Appl. Mater. Interfaces, 5 (2013) 1093-1099. https://doi.org/10.1021/am302877q
  7. H. Li, R. Y. Tay, S. H. Tsang, W. Liu, E. H. T. Teo, Reduced graphene oxide/boron nitride composite film as a novel binder-free anode for lithium ion batteries with enhanced performances, Electrochim. Acta, 166 (2015) 197-205. https://doi.org/10.1016/j.electacta.2015.03.109
  8. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407 (2000) 496-499. https://doi.org/10.1038/35035045
  9. J. S. Do, C. H. Weng, Preparation and characterization of CoO used as anodic material of lithium battery, J. Power Sources, 146 (2005) 482-486.
  10. J. S. Do, C. H. Weng, Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries, J. Power Sources, 159 (2006) 323-327.
  11. Y. Qin, Q. Li, J. Xu, X. Wang, G. Zhao, C. Liu, X. Yan, Y. Long, S. Yan, S. Li, CoO-Co nanocomposite anode with enhanced electrochemical performance for lithiumion batteries, Electrochim. Acta, 224 (2017) 90-95. https://doi.org/10.1016/j.electacta.2016.12.040
  12. F. D. Wu, Y. Wang, Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@ CNT for lithium-ion batteries, J. Mater. Chem., 21 (2011) 6636-6641. https://doi.org/10.1039/c0jm04346j
  13. B. Wan, J. Guo, W. H. Lai, Y. X. Wang, M. Liu, H. K. Liu, J. Z. Wang, S. L. Chou, S. X. Dou, Layered mesoporous CoO/reduced graphene oxide with strong interfacial coupling as a high-performance anode for lithium-ion batteries, J. Alloys Compd., 843 (2020) 156050.
  14. L. H. Wang, X. L. Teng, Y. F. Qin, Q. Li, High electrochemical performance and structural stability of CoO nanosheets/ CoO film as self-supported anodes for lithium-ion batteries, Ceram. Int., 47 (2021) 5739-5746. https://doi.org/10.1016/j.ceramint.2020.10.160
  15. S. W. Song, K. A. Striebel, R. P. Reade, G. A. Roberts, E. J. Cairns, Electrochemical studies of nanoncrystalline Mg2Si thin film electrodes prepared by pulsed laser deposition, J. Electrochem. Soc., 150 (2002) A121.
  16. H.C. Shin, M. Liu, Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater., 15 (2005) 582-586. https://doi.org/10.1002/adfm.200305165
  17. X. Huang, J. Tu, Z. Zeng, J. Xiang, X. Zhao, Nickel foam-supported porous NiO/Ag film electrode for lithium-Ion batteries, J. Electrochem. Soc., 155 (2008) A438.
  18. H. J. Wang, J. M. Wang, W. B. Fang, H. Wan, L. Liu, H. Q. Lian, H. B. Shao, W. X. Chen, J. Q. Zhang, C. N. Cao, Structural and electrochemical properties of a porous nanostructured SnO2 film electrode for lithium-ion batteries, Electrochem. Commun., 12 (2010) 194-197. https://doi.org/10.1016/j.elecom.2009.11.022
  19. J. Qu, H. Li, J. J. Henry, S. K. Martha, N. J. Dudney, H. Xu, M. Chi, M. J. Lance, S. M. Mahurin, T. M. Besmann, Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries, J. Power Sources, 198 (2012) 312-317. https://doi.org/10.1016/j.jpowsour.2011.10.004
  20. J. Wang, N. Du, H. Zhang, J. Yu, D. Yang, Cu-Ge core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries, J. Mater. Chem., 22 (2012) 1511-1515. https://doi.org/10.1039/C1JM14430H
  21. G. Pan, X. Xia, F. Cao, P. Tang, H. Chen, Fabrication of porous Co/NiO core/ shell nanowire arrays for electrochemical capacitor application, Electrochem. Commun., 34 (2013) 146-149. https://doi.org/10.1016/j.elecom.2013.06.004
  22. W. S. Choi, H. C. Shin, Microporous sponge structure with copper-cobalt oxide hybrid nanobranches, J. Alloys Compd., 692 (2017) 670-675.
  23. J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang, G. Sun, Controllable synthesis of cobalt monoxide nanoparticles and the size-dependent activity for oxygen reduction reaction, ACS Catal., 4 (2014) 2998-3001. https://doi.org/10.1021/cs500741s
  24. S. Grugeon, S. Laruelle, L. Dupont, J. M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li, Solid State Sci., 5 (2003) 895-904. https://doi.org/10.1016/S1293-2558(03)00114-6
  25. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, W. Liang, Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials, Electrochim. Acta, 132 (2014) 127-135. https://doi.org/10.1016/j.electacta.2014.03.158
  26. L. Li, J. Xiao, G. Yang, Amorphization of cobalt monoxide nanocrystals and related explosive gas sensing applications, Nanotechnology, 26 (2015) 415501.
  27. L. Wang, Y. Zhu, C. Guo, X. Zhu, J. Liang, Y. Qian, Ferric chloride-Graphite Intercalation Compounds as Anode Materials for Li-ion Batteries, ChemSusChem, 7 (2014) 87-91. https://doi.org/10.1002/cssc.201300874
  28. J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries, Adv. Sci., 4 (2017) 1700146.
  29. H. C. Choi, S. Y. Lee, S. B. Kim, M.G. Kim, M. K. Lee, H. J. Shin, J. S. Lee, Local Structural Characterization for Electrochemical Insertion- Extraction of Lithium into CoO with X-ray Absorption Spectroscopy, J. Phys. Chem. B, 106 (2002) 9252-9260. https://doi.org/10.1021/jp0205968
  30. J. S. Do, R. F. Dai, Cobalt oxide thin film prepared by an electrochemical route for Li-ion battery, J. Power Sources, 189 (2009) 204-210. https://doi.org/10.1016/j.jpowsour.2008.09.093
  31. C. Chen, B. Hwang, J. Do, J. Weng, M. Venkateswarlu, M. Cheng, R. Santhanam, K. Ragavendran, J. Lee, J. Chen, An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery, Electrochem. Commun., 12 (2010) 496-498. https://doi.org/10.1016/j.elecom.2010.01.031
  32. A. K. Rai, L. T. Anh, J. Gim, J. Kim, Onestep synthesis of CoO anode material for rechargeable lithium-ion batteries, Ceram. Int., 39 (2013) 9325-9330. https://doi.org/10.1016/j.ceramint.2013.05.049
  33. Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry, Nat. Mater., 20 (2021) 76-83. https://doi.org/10.1038/s41563-020-0756-y
  34. H. Li, Z. Hu, Q. Xia, H. Zhang, Z. Li, H. Wang, X. Li, F. Zuo, F. Zhang, X. Wang, Operando magnetometry probing the charge storage mechanism of CoO lithium-ion batteries, Adv. Mater., 33 (2021) 2006629.
  35. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, From the vanadates to 3d-metal oxides negative electrodes, Ionics, 6 (2000) 321-330. https://doi.org/10.1007/bf02374148
  36. M. Dolle, P. Poizot, L. Dupont, J. M. Tarascon, Experimental evidence for electrolyte involvement in the reversible reactivity of CoO toward compounds at low potential, Electrochem. Solid-State Lett., 5 (2001) A18.
  37. W. S. Choi, S. Y. Hwang, W. Y. Chang, H. C. Shin, Degradation of Co3O4 anode in rechargeable lithium-ion battery: a semi-empirical approach to the effect of conducting material content, J. Solid State Electrochem., 20 (2016) 345-352. https://doi.org/10.1007/s10008-015-3050-1
  38. H. R. Jung, E. J. Kim, Y. J. Park, H. C. Shin, Nickel-tin foam with nanostructured walls for rechargeable lithium battery, J. Power Sources, 196 (11) (2011) 5122-5127. https://doi.org/10.1016/j.jpowsour.2011.01.110