• Title/Summary/Keyword: Graphical Representation

Search Result 146, Processing Time 0.02 seconds

Geologic Map Data Model (지질도 데이터 모델)

  • Yeon, Young-Kwang;Han, Jong-Gyu;Lee, Hong-Jin;Chi, Kwang-Hoon;Ryu, Kun-Ho
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.273-282
    • /
    • 2009
  • To render more valuable information, a spatial database is being constructed from digitalized maps in the geographic areas. Transferring file-based maps into a spatial database, facilitates the integration of larger databases and information retrieval using database functions. Geological mapping is the graphical interpretation results of the geological phenomenon by geological surveyors, which is different from other thematic maps produced quantitatively. These features make it difficult to construct geologic databases needing geologic interpretation about various meanings. For those reasons, several organizations in the USA and Australia are suggesting the data model for the database construction. But, it is hard to adapt to a domestic environment because of the representation differences of geological phenomenon. This paper suggests the data model adaptive in domestic environment analyzing 1:50,000 scales of geologic maps and more detailed mine geologic maps. The suggested model is a logical data model for the ArcGIS GeoDatabase. Using the model it can be efficiently applicable in the 1:50,000 scales of geological maps. It is expected that the geologic data model suggested in this paper can be used for integrated use and efficient management of geologic maps.

Intermediate-Representation Translation Techniques to Improve Vulnerability Analysis Efficiency for Binary Files in Embedded Devices (임베디드 기기 바이너리 취약점 분석 효율성 제고를 위한 중간어 변환 기술)

  • Jeoung, Byeoung Ho;Kim, Yong Hyuk;Bae, Sung il;Im, Eul Gyu
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Utilizing sequence control and numerical computing, embedded devices are used in a variety of automated systems, including those at industrial sites, in accordance with their control program. Since embedded devices are used as a control system in corporate industrial complexes, nuclear power plants and public transport infrastructure nowadays, deliberate attacks on them can cause significant economic and social damages. Most attacks aimed at embedded devices are data-coded, code-modulated, and control-programmed. The control programs for industry-automated embedded devices are designed to represent circuit structures, unlike common programming languages, and most industrial automation control programs are designed with a graphical language, LAD, which is difficult to process static analysis. Because of these characteristics, the vulnerability analysis and security related studies for industry automation control programs have only progressed up to the formal verification, real-time monitoring levels. Furthermore, the static analysis of industrial automation control programs, which can detect vulnerabilities in advance and prepare for attacks, stays poorly researched. Therefore, this study suggests a method to present a discussion on an industry automation control program designed to represent the circuit structure to increase the efficiency of static analysis of embedded industrial automation programs. It also proposes a medium term translation technology exploiting LLVM IR to comprehensively analyze the industrial automation control programs of various manufacturers. By using LLVM IR, it is possible to perform integrated analysis on dynamic analysis. In this study, a prototype program that converts to a logical expression type of medium language was developed with regards to the S company's control program in order to verify our method.

A Study on the Design Identity of Optical Shop Brands (안경원 브랜드의 디자인아이덴티티에 관한 연구)

  • Hong, Sung-Il;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.435-443
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the design identity visual elements of optical shop brand$\underline{s}$ in order to provide objective data necessary for optical shop brands' design development. Methods: This study examined the design identity concept of the optical shop brands and analyzed visual elements of brand design identity with a focus on the symbols of domestic franchise optical shops, type of a symbol mark, representation style of logo type, color usage, use or non-use of character, etc. Results: Many symbols were directly associated with the eyeglasses, such as eyeglasses and eyes, face and iris. Along with that, letters or figures were also observed. For the type of symbol, most types were found to have the designs that took spherical and word mark shapes. Particularly, the word mark type had English words more often than Korean words. For logo types, the gothic format was dominant. In relation to the thickness of letter, thick boldface type was commonly used. The combination of 2 degrees was the color frequency used most often in the optical shop brand design. For the frequency of color usage, black and red colors were used most often. Particularly, the orange color, as well as the black color, was also often used for the main color of symbols or logo types. Meanwhile, the characters were used only in some optical shop. Most characters were animals and expressed in the cartoon and graphical forms. Conclusions: Typifier, symbol mark, logo type, color, and character are the elements forming the basic development system for brand design identity. Systematic design is needed which clearly ensures the function and role along with the mutual consistency as a important visual component of the optical shop brand.

An Analysis of the Infographics Features of Visualization Materials in Section 'Information and Communication' of Physics I Textbook (물리 I 교과서의 '정보와 통신' 단원에 제시된 시각화 자료의 인포그래픽 특징 분석)

  • Noh, Sang Mi;Son, Jeongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.359-366
    • /
    • 2014
  • In this study, we try to examine its features by using the methods of systematic infographics analysis for visualization materials that are used in Physics I textbooks. Thus, after developing the analytical framework infographics, visualization materials is described in the section "information and communication" and have been analyzed separately as "data visualization" and "Infographics." The results of this study are as follows. First, the analysis framework of infographics can be classified contents of the information, visual representation, and media method. Second, the visualization materials that are displayed in the section "information and communication" of Physics I textbook are of higher quality than most schematized data that are graphically, simple information. Third, the features of visualization materials in textbooks have many relations & functions on 'information content', text & metaphor on 'visual element', illustration & comparison on 'expression type', graphic on 'expression mode', printed matter on 'media method', and horizontal & vertical type on 'the flow of attention'. From the analysis results, in the section "information and communication" of Physics I textbook uses a lot of visualization materials, however it does not provide rich infographics but only simple graphical materials. By utilizing the results of the analysis of textbook and analysis framework of infographics, which has been developed through the this study, let us hope that the opportunity to be able to grasp the importance of infographics in science education be provided.

Development of Expert System for Water Quality Parameter Estimation Using Avenue (Avenue를 활용한 수질매개변수 추정 전문가 시스템 개발)

  • Bae, Duk-Hyo;Han, Gun-Yeon;Choi, Chul-Gwan
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.161-171
    • /
    • 2002
  • It has been known that the accurate estimates of 2-dimensional water quality model parameters are difficult for non-experts due to the complexity of theoretical background and input requirement and complicated inter-relationship between model Parameters. The main goal of this study is to Provide expert system for the optimal estimation of water quality model parameters, which is based on the development of chaining mechanism according to the sensitivity analysis of model parameter interactions and GUI interface system on ArcView Avenue. The selected study area is the 35.3- km main Han river starting from Paldang Dam site to the Point of Indo bridge and the tributary inflows including pollutant data are used for the system application and validation. The estimated main model parameters are 0.367 for transverse dispersion coefficient, 0.074 for and 0.162 for. It also shows that the simulated water quality constituents such as DO and BOD based on the estimated model parameters are well agreed with the observed ones. It can be concluded that the developed GIS-based expert system for water quality model parameter estimation and graphical representation of water quality analysis is useful for the scientific water quality management.

Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis (극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Hwang, Kyu-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.733-745
    • /
    • 2010
  • Seasonality of hydrologic extreme variable is a significant element from a water resources managemental point of view. It is closely related with various fields such as dam operation, flood control, irrigation water management, and so on. Hydrological frequency analysis conjunction with partial duration series rather than block maxima, offers benefits that include data expansion, analysis of seasonality and occurrence. In this study, nonstationary frequency analysis based on the Bayesian model has been suggested which effectively linked with advantage of POT (peaks over threshold) analysis that contains seasonality information. A selected threshold that the value of upper 98% among the 24 hours duration rainfall was applied to extract POT series at Seoul station, and goodness-fit-test of selected GEV distribution has been examined through graphical representation. Seasonal variation of location and scale parameter ($\mu$ and $\sigma$) of GEV distribution were represented by Fourier series, and the posterior distributions were estimated by Bayesian Markov Chain Monte Carlo simulation. The design rainfall estimated by GEV quantile function and derived posterior distribution for the Fourier coefficients, were illustrated with a wide range of return periods. The nonstationary frequency analysis considering seasonality can reasonably reproduce underlying extreme distribution and simultaneously provide a full annual cycle of the design rainfall as well.