• Title/Summary/Keyword: Graphene sensor

검색결과 94건 처리시간 0.039초

Gas sensor based on hydrogenated multilayer graphene

  • 박성진;박민지;유경화
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

Highly Sensitive and Transparent Pressure Sensor Using Double Layer Graphene Transferred onto Flexible Substrate

  • Chun, Sungwoo;Kim, Youngjun;Jin, Hyungki;Jung, Hyojin;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.2-229.2
    • /
    • 2014
  • Graphene, an allotrope of carbon, is a two-dimensional material having a unique electro-mechanical property that shows significant change of the electrical conductance under the applied strain. In addition of the extraordinary mechanical strength [1], graphene becomes a prospective candidate for pressure sensor technology [2]. However, very few investigations have been carried out to demonstrate characteristics of graphene sensor as a device form. In this study, we demonstrate a pressure sensor using graphene double layer as an active channel to generate electrical signal as the response of the applied vertical pressure. For formation of the active channel in the pressure sensor, two single graphene layers which are grown on Cu foil (25 um thickness) by the plasma enhanced chemical vapor deposition (PECVD) are sequentially transformed to the poly-di-methyl-siloxane (PDMS) substrate. Dry and wet transfer methods are individually employed for formation of the double layer graphene. This sensor geometry results a switching characteristic which shows ~900% conductivity change in response to the application of pulsed pressure of 5 kPa whose on and off duration is 3 sec. Additionally, the functional reliability of the sensor confirms consistent behavior with a 200-cycle test.

  • PDF

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발 (Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene)

  • 임대윤;하태원;이칠형
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

고분자/그래핀 복합재료의 센서 응용 및 그래핀 함량이 센서 거동에 미치는 영향 (Chemical Sensors Using Polymer/Graphene Composite and The Effect of Graphene Content on Sensor Behavior)

  • 배준원
    • 공업화학
    • /
    • 제31권1호
    • /
    • pp.25-29
    • /
    • 2020
  • 본 연구에서는 롤 공정으로 제작된 고분자(polydimethylsiloxane, PDMS)/그래핀(graphene) 복합재료를 기판으로 하여 간단한 표면처리 공정을 통해 센서를 구현하였고, 이 센서의 성능과 거동에 대한 고찰을 실시하였다. 고분자와 그래핀 파우더를 혼합한 전구체를 3-롤 공정으로 제조하였고, 이를 2-롤 공정에 도입하여 고분자/그래핀 기판 소재를 제조하였다. 나아가, 간단한 표면처리 공정을 통하여 센서의 요체가 되는 환형 다당류(cyclodextrin, CD)를 도입하였다. 표면처리의 유효성의 적외선 분광기를 통해서 확인하였고, 전기 신호 전달의 가능성을 옴의 법칙을 통하여 분석하였다. 간단한 형태의 센서를 구현하여, 분석 물질(methyl paraben, MePRB)을 도입하였을 때, 아주 낮은 농도 수준(10 nM)까지 감지 신호를 얻을 수 있었다. 특히, 그래핀의 함량이 낮을 경우 센서 측정이 어려움을 확인할 수 있었다. 이는, 높은 그래핀 함량에서 보여주는 그래핀 입자의 배향이 다소 억제되어 발생하였을 것으로 사료된다. 이는 첨가제의 물리적인 배향이 센서의 성능에 영향을 미칠 수 있다는 것을 의미한다. 이 정보는 향후 유사한 시스템의 센서를 구현하는 연구에 도움이 될 것으로 기대된다.

균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정 (Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero)

  • 박홍휘;최무한;박홍식
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

ssDNA를 이용한 그래핀 가스 센서 (Vapor Detection of ssDNA Decorated Graphene Transistor)

  • 정영모;김영준;문희규;김수민;신범주;이주송;서민아;이택진;김재헌;전성찬;이석;김철기
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.310-313
    • /
    • 2014
  • We report a way to improve the ability of graphene to operate as a gas sensor by applying single stranded deoxyribonucleic acid (DNA). The sensitivity and recovery of the DNA-graphene sensor depending on the different DNA sequences are analyzed. The different sensor responses to reactive chemical vapors are demonstrated in the time domain. Because of the chemical gating effect of the deposited DNA, the resulting devices show complete and rapid recovery to baseline unlike the bare graphene at room temperature. The application of the pattern recognition technique can increase the potential of DNA-graphene sensors as a chemical vapor classifier.

Graphene Coated Optical Fiber SPR Biosensor

  • Kim, Jang Ah;Hwang, Taehyun;Dugasani, Sreekantha Reddy;Kulkarni, Atul;Park, Sung Ha;Kim, Taesung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2014
  • In this study, graphene, the most attractive material today, has been applied to the wavelength-modulated surface plasmon resonance (SPR) sensor. The optical fiber sensor technology is the most fascinating topic because of its several benefits. In addition to this, the SPR phenomenon enables the detection of biomaterials to be label-free, highly sensitive, and accurate. Therefore, the optical fiber SPR sensor has powerful advantages to detect biomaterials. Meanwhile, Graphene shows superior mechanical, electrical, and optical characteristics, so that it has tremendous potential to be applied to any applications. Especially, grapheme has tighter confinement plasmon and relatively long propagation distances, so that it can enhance the light-matter interactions (F. H. L. Koppens, et al., Nano Lett., 2011). Accordingly, we coated graphene on the optical fiber probe which we fabricated to compose the wavelength-modulated SPR sensor (Figure 1.). The graphene film was synthesized via thermal chemical vapor deposition (CVD) process. Synthesized graphene was transferred on the core exposed region of fiber optic by lift-off method. Detected analytes were biotinylated double cross-over DNA structure (DXB) and Streptavidin (SA) as the ligand-receptor binding model. The preliminary results showed the SPR signal shifts for the DXB and SA binding rather than the concentration change.

  • PDF

In-Situ Heat Cooling using Thick Graphene and Temperature Monitoring with Single Mask Process

  • Kwack, Kyuhyun;Chun, Kukjin
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.155-158
    • /
    • 2015
  • In this paper, in-situ heat cooling with temperature monitoring is reported to solve thermal issues in electric vehicle (EV) batteries. The device consists of a thick graphene cooler on top of the substrate and a platinum-based resistive temperature sensor with an embedded heater above the graphene. The graphene layer is synthesized by using chemical vapor deposition directly on the Ni layer above the Si substrate. The proposed thick graphene heat cooler does not use transfer technology, which involves many process steps and does not provide a high yield. This method also reduces the mechanical damage of the graphene and uses only one photomask. Using this structure, temperature detection and cooling are conducted simultaneously using one device. The temperature coefficient of resistance (TCR) of a $1{\times}1mm^2$ temperature sensor on 1-$\grave{i}m$-thick graphene is $1.573{\times}10^3ppm/^{\circ}C$. The heat source cools down $7.3^{\circ}C$ from $54.4^{\circ}C$ to $47.1^{\circ}C$.