• Title/Summary/Keyword: Graphene on Si

Search Result 136, Processing Time 0.033 seconds

Improvement Performance of Graphene-MoS2 Barristor treated by 3-aminopropyltriethoxysilane (APTES)

  • O, Ae-Ri;Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.1-291.1
    • /
    • 2016
  • Graphene by one of the two-dimensional (2D) materials has been focused on electronic applications due to its ultrahigh carrier mobility, outstanding thermal conductivity and superior optical properties. Although graphene has many remarkable properties, graphene devices have low on/off current ratio due to its zero bandgap. Despite considerable efforts to open its bandgap, it's hard to obtain appropriate improvements. To solve this problem, heterojunction barristor was proposed based on graphene. Mostly, this heterojunction barristor is made by transition metal dichalcogenides (TMDs), such as molybdenum disulfide ($MoS_2$) and tungsten diselenide ($WSe_2$), which have extremely thickness scalability of TMDs. The heterojunction barristor has the advantage of controlling graphene's Fermi level by applying gate bias, resulting in barrier height modulation between graphene interface and semiconductor. However, charged impurities between graphene and $SiO_2$ cause unexpected p-type doping of graphene. The graphene's Fermi level modulation is expected to be reduced due to this p-doping effect. Charged impurities make carrier mobility in graphene reduced and modulation of graphene's Fermi level limited. In this paper, we investigated theoretically and experimentally a relevance between graphene's Fermi level and p-type doping. Theoretically, when Fermi level is placed at the Dirac point, larger graphene's Fermi level modulation was calculated between -20 V and +20 V of $V_{GS}$. On the contrary, graphene's Fermi level modulation was 0.11 eV when Fermi level is far away from the Dirac point in the same range. Then, we produced two types heterojunction barristors which made by p-type doped graphene and graphene treated 2.4% APTES, respectively. On/off current ratio (32-fold) of graphene treated 2.4% APTES was improved in comparison with p-type doped graphene.

  • PDF

Interfacial Charge and Mass Transfer at Graphene-SiO2 Substrates: Raman Spectroscopic Studies

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.115.1-115.1
    • /
    • 2014
  • Atom-thick 2-dimensional materials such as graphene, h-BN and MoS2 hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. From a fundamental point of view, 2-dim crystal-solid substrates can also serve as a unique system to study various physicochemical phenomena occurring at low dimensions or interfaces. In this talk, I will present our recent Raman spectroscopy studies on the surface science problems of graphene: interfacial charge transfer, molecular diffusion in confined space and structural deformation.

  • PDF

Number of Graphene Layers As a Modulator of the Open-circuit Voltage of Graphene-Based Solar Cell

  • Im, Gyu-Uk;Lee, Gyeong-Jae;Im, Jong-Tae;Gang, Tae-Hui;Jeong, Seok-Min;Hong, Byeong-Hui;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.113-113
    • /
    • 2011
  • Impressive optical properties of graphene have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we show the direct dependence of open-circuit voltage (Voc) on numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces.

  • PDF

Heteroepitaxial Structure of ZnO Films Deposited on Graphene, $SiO_2$ and Si Substrates

  • Pak, Sang-Woo;Cho, Seong-Gook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.309-309
    • /
    • 2012
  • Heteroepitaxial growth remains as one of the continuously growing interests, because the heterogeneous crystallization on different substrates is a common feature in the fabrication processes of many semiconductor materials and devices, such as molecular beam epitaxy, pulsed laser deposition, sputtering, chemical bath deposition, chemical vapor deposition, hydrothermal synthesis, vapor phase transport and so on [1,2]. By using the R.F. sputtering system, ZnO thin films were deposited on graphene 4 and 6 mono layers, which is grown on 400 nm and 600 nm $SiO_2$ substrates, respectively. The ZnO thin layer was deposited at various temperatures by using a ZnO target. In this experimental, the working power and pressure were $3{\times}10^{-3}$ Torr and 50 W, respectively. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen and argon gas flows were controlled around 5 and 10 sccm by using a mass flow controller system, respectively. The structural properties of the samples were analyzed by XRD measurement. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system. The surface morphologies were observed using field emission scanning electron microscope (FE-SEM).

  • PDF

Entangled-Mesh Graphene for Highly Stretchable Electronics

  • Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.351.1-351.1
    • /
    • 2016
  • While conventional electronic devices have been fabricated on the rigid and brittle Si based wafer as a semiconducting substrate, future devices are increasingly finding applications where flexibility and stretchability are further integrated to enable emerging and wearable devices. To achieve high flexibility and stretchability, various approaches are investigated such as polymer based conducting composite, thin metal films on the polymer substrate, and structural modifications for stretchable electronics. In spite of many efforts, it is still a challenge to identify a solution that offers both high stretchability and superior electrical properties. In this paper, we introduce a highly stretchable entangled-mesh graphene showing a potential to address such requirements as stretchability and good electrical performance. Entangle-mesh graphene was synthesized by CVD graphene on the Cu foil. To analyze the mechanical properties of entangled-mesh graphene, endurance and stretching tester have been used.

  • PDF

Electronic and atomic structure control of epitaxial graphene

  • An, Jong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.53-53
    • /
    • 2010
  • Graphene comes into the spotlight as an emergent device material on account of its high carrier mobility reflecting its massless Dirac fermion behavior. Chemical technique to control reversibly the carrier concentration of semiconducting graphene for the achievement of a large-area graphene device has been strongly required. Here we show that the adsorptions of a metal and a molecule can manipulate the carrier concentration of single-layer graphene, epitaxially grown on SiC, which was directly observed using angle-resolve photoemission spectroscopy. These results will shed light on the researches for the very large scale integration of a graphene device. Furthermore, the carrier concentration changes can be applied to a highly sensitive gas sensor or a detector for an specific binding between an antigen and an antibody.

  • PDF

Exploration of growth mechanism for layer controllable graphene on copper

  • Song, Woo-Seok;Kim, Yoo-Seok;Kim, Soo-Youn;Kim, Sung-Hwan;Jung, Dae-Sung;Jun, Woo-Sung;Jeon, Cheol-Ho;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.490-490
    • /
    • 2011
  • Graphene, hexagonal network of carbon atoms forming a one-atom thick planar sheet, has been emerged as a fascinating material for future nanoelectronics. Huge attention has been captured by its extraordinary electronic properties, such as bipolar conductance, half integer quantum Hall effect at room temperature, ballistic transport over ${\sim}0.4{\mu}m$ length and extremely high carrier mobility at room temperature. Several approaches have been developed to produce graphene, such as micromechanical cleavage of highly ordered pyrolytic graphite using adhesive tape, chemical reduction of exfoliated graphite oxide, epitaxial growth of graphene on SiC and single crystalline metal substrate, and chemical vapor deposition (CVD) synthesis. In particular, direct synthesis of graphene using metal catalytic substrate in CVD process provides a new way to large-scale production of graphene film for realization of graphene-based electronics. In this method, metal catalytic substrates including Ni and Cu have been used for CVD synthesis of graphene. There are two proposed mechanism of graphene synthesis: carbon diffusion and precipitation for graphene synthesized on Ni, and surface adsorption for graphene synthesized on Cu, namely, self-limiting growth mechanism, which can be divided by difference of carbon solubility of the metals. Here we present that large area, uniform, and layer controllable graphene synthesized on Cu catalytic substrate is achieved by acetylene-assisted CVD. The number of graphene layer can be simply controlled by adjusting acetylene injection time, verified by Raman spectroscopy. Structural features and full details of mechanism for the growth of layer controllable graphene on Cu were systematically explored by transmission electron microscopy, atomic force microscopy, and secondary ion mass spectroscopy.

  • PDF

Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

  • Kim, Y.;Song, W.;Lee, S.Y.;Jung, W.;Kim, M.K.;Jeon, C.;Park, C.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.80-80
    • /
    • 2010
  • Graphene has attracted tremendous attention for the last a few years due to it fascinating electrical, mechanical, and chemical properties. Up to now, several methods have been developed exclusively to prepare graphene, which include micromechanical cleavage, polycrystalline Ni employing chemical vapor deposition technique, solvent thermal reaction, thermal desorption of Si from SiC substrates, chemical routes via graphite intercalation compounds or graphite oxide. In particular, polycrystalline Ni foil and conventional chemical vapor deposition system have been widely used for synthesis of large-area graphene. [1-3] In this study, synthesis of mono-layer graphene on a Ni foil, the mixing ratio of hydrocarbon ($CH_4$) gas to hydrogen gas, microwave power, and growth time were systemically optimized. It is possible to synthesize a graphene at relatively lower temperature ($500^{\circ}C$) than those (${\sim}1000^{\circ}C$) of previous results. Also, we could control the number of graphene according to the growth conditions. The structural features such as surface morphology, crystallinity and number of layer were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), transmission electron microscopy (TEM) and resonant Raman spectroscopy with 514 nm excitation wavelength. We believe that our approach for the synthesis of mono-layer graphene may be potentially useful for the development of many electronic devices.

  • PDF

Ring Formation of Furan on Epitaxial Graphene

  • Kim, Ki-Jeong;Yang, Sena;Lee, Han-Koo;Kim, Bong-Soo;Lee, Hang-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.315-315
    • /
    • 2011
  • The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC(0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and high resolution photoemission spectroscopy (HRPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair of electrons on the oxygen group, allowing chemical doping. We also found that furan spontaneously formed rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and HRPES, respectively.

  • PDF

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF