• 제목/요약/키워드: Graphene on Si

검색결과 136건 처리시간 0.041초

Investigation of Charge Transfer between Graphene and Oxide Substrates

  • Min, Kyung-Ah;Hong, Suklyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.186.1-186.1
    • /
    • 2014
  • Graphene, which is a 2-dimensional carbon material, has been attracting much interest due to its unique properties and potential applications. So far, many interesting experimental and theoretical works have been done concerning the electronic properties of graphene on various substrates. Especially, there are many experimental reports about doping in graphene which is caused by interaction between graphene and its supporting substrates. Here, we report the study of charge transfer between graphene and oxide substrates using density functional theory (DFT) calculations. In this study, we have investigated the charge transfer related with graphene considering various oxide substrates such as SiO2(0001) and MgO(111). Details in charge transfer between graphene and oxides are analyzed in terms of charge density difference, band structure and work function.

  • PDF

Single-Domain-Like Graphene with ZnO-Stitching by Defect-Selective Atomic Layer Deposition

  • 김홍범;박경선;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.329-329
    • /
    • 2016
  • Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

  • PDF

Photoresponse Properties of Reduced Graphene Oxide/n-silicon Heterojunction Fabricated by the Vacuum Filtration and Transfer Method

  • Du, Yonggang;Qiao, Liangxin;Xue, Dingyuan;Jia, Yulei
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.367-374
    • /
    • 2022
  • A photodetector based on a reduced graphene oxide (RGO)/n-Si heterojunction with high responsivity, detectivity and fast response speed is presented. Here, we put forward a simple vacuum filtration method to prepare RGO film and transfer it onto an n-Si substrate to form an RGO/n-Si heterojunction. The experimental results show that the heterojunction has good rectification characteristics, and the response and recovery time are less than 0.31 s and 0.25 s, respectively. Under 470 nm light conditions at -2 V applied voltage, the responsivity and detectivity of the device are 65 mA/W and 4.02 × 1010 cmHz1/2W-1, respectively. The simple preparation process and good performance of the RGO/n-Si heterojunction make it a promising material for photoelectric detection, especially in the near-ultraviolet band.

Plasmonic Effect on Graphene Metal Hybrid Films

  • Park, Si Jin;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.468-468
    • /
    • 2013
  • Self-assembled silver nanoparticles were synthesized on a graphene film to investigate plasmonic effect. Graphene was synthesized on glass substrate using chemical vapor deposition method and transfer process. Silver nanoparticles were formed using thermal evaporator and post-annealing process. The shape of silver nanoparticles was measured using a scanning electron microscopy. The resonance wavelength of plasmonic effect on graphene-silver nanoparticles was measured using transmittance spectra. The plasmon resonance wavelength was increased from 400 nm to 424 nm according to the lateral dimension of silver nanoparticles. Also we confirmed a strong plasmon effect form Raman spectra, which were measured on graphene-silver nanoparticles. The result shows that plasmon resonance wavelength could be controlled by lateral dimension of silver nanoparticles, and transparent conductive films based on plasmonic graphene could be developed.

  • PDF

Domain Size and Density in Graphene Grown with Different CVD Growth

  • 강청;정다희;남지은;이진석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.264.1-264.1
    • /
    • 2013
  • Graphene is a two-dimensional carbon material whose structure is one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice. It has drawn significant attention with its distinguished structural and electrical properties. Extremely high mobility and a tunable band gap make graphene potentially useful for innovative approaches to electronics. Although mechanical exfoliation of graphite and decomposition of SiC surfaces upon thermal treatment have been the main method for graphene, they have some limitations in quality and scalability of as-produced graphene films. Solutionphase and solvothermal syntheses of graphene achieved a major improvement for processing, however for device fabrication, a reproducible method such as chemical vapor deposition (CVD) growth yielding high quality films of controlled thickness is required. In this research, we synthesized hexagonal graphene flakes on Cu foils by CVD method and controlled its coverage, density and the size of graphene domains by changing reaction parameters. It is important to control these parameters of graphene growth during synthesis in order to achieve tunable properties and optimized device performance.

  • PDF

Synthesis and Characterization of Mn3O4-Graphene Nanocomposite thin Film by an ex situ Approach

  • Kang, Myunggoo;Kim, Jung Hun;Yang, Woochul;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1067-1072
    • /
    • 2014
  • In this study, we report a new approach for $Mn_3O_4$-graphene nanocomposite by ex situ method. This nanocomposite shows two-dimensional aggregation of nanoparticle, and doping effect by decorated manganese oxide ($Mn_3O_4$), as well. The graphene film was made through micromechanical cleavage of graphite on the $SiO_2/Si$ wafer. Manganese oxide ($Mn_3O_4$) nanoparticle with uniform cubic shape and size (about $5.47{\pm}0.61$ nm sized) was synthesized through the thermal decomposition of manganese(II) acetate, in the presence of oleic acid and oleylamine. The nanocomposite was obtained by self-assembly of nanoparticles on graphene film, using hydrophobic interaction. After heat treatment, the decorated nanoparticles have island structure, with one-layer thickness by two-dimensional aggregations of particles, to minimize the surface potential of each particle. The doping effect of $Mn_3O_4$ nanoparticle was investigated with Raman spectra. Given the upshift in positions of G and 2D in raman peaks, we suggest that $Mn_3O_4$ nanoparticles induce p-doping of graphene film.

그래핀 하부전극을 이용하여 BMNO 케페시터의 특성 향상을 위한 Ti Adhesion Layer의 효과 (Effect of Ti Adhesion Layer on the Electrical Properties of BMNO Capacitor Using Graphene Bottom Electrodes)

  • 박병주;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.867-871
    • /
    • 2013
  • The Ti adhesion layers were deposited onto the glass substrate for transparent capacitors using $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO) dielectric thin films. Graphene was transferred onto the Ti/glass substrate after growing onto the Ni/$SiO_2$/Si using rapid-thermal pulse CVD (RTPCVD). The BMNO dielectric thin films were investigated for the microstructure, dielectric and leakage properties in the case of capacitors with and without Ti adhesion layers. Leakage current and dielectric properties were strongly dependent on the Ti adhesion layers grown for graphene bottom electrode.

Near-Field Imaging of Graphene

  • 권혁상;김덕수;김지환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.127-127
    • /
    • 2012
  • We carried out the high-resolution dielectric mapping of graphenes on $SiO_2$/Si substrate, using the scattering Apertureless Near-Field Scanning Optical Microscopy (s-ANSOM) in both visible (633 nm) and infrared (3.6 um) wavelengths. In the visible wavelength, the dielectric contrasts are almost proportional to the number of the graphene layers, which indicates that the near-field interaction between the tip and individual graphene layers leads to an image charge oscillation in two-dimension. In the infrared region, on the other hand, we observe unique layer-specific contrasts that do not linearly increase with number of layers. It is attributed to the layer-dependent band- structure of graphenes.

  • PDF

Au 나노입자가 코팅된 그래핀 기반 CO2 가스센서의 제작과 그 특성 (Fabrication of CO2 Gas Sensors Using Graphene Decorated Au Nanoparticles and Their Characteristics)

  • 배상진;김강산;정귀상
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.197-201
    • /
    • 2013
  • This paper describes the fabrication and characterization of graphene based carbon dioxide ($CO_2$) gas sensors. Graphene was synthesized by thermal decomposition of SiC. The resistivity $CO_2$ gas sensors were fabricated by pure graphene and graphene decorated Au nanoparticles (NPs). The Au NPs with size of 10 nm were decorated on graphene. Au electrode deposited on the graphene showed Ohmic contact and the sensors resistance changed following to various $CO_2$ concentrations. Resulting in resistance sensor using pure graphene can detect minimum of 100 ppm $CO_2$ concentration at $50^{\circ}C$, whereas Au/graphene can detect minimum 2 ppm $CO_2$ concentration at same at $50^{\circ}C$. Moreover, Au NPs catalyst improved the sensitivity of the graphene based $CO_2$ sensors. The responses of pure graphene and Au/graphene are 0.04% and 0.24%, respectively, at $50^{\circ}C$ with 500 ppm $CO_2$ concentration. The optimum working temperature of $CO_2$ sensors is at $75^{\circ}C$.

Control the Work Function and Plasmon Effect on Graphene Surface Using Metal Nanoparticles for High Performance Optoelectronics

  • Park, Si Jin;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.166.1-166.1
    • /
    • 2014
  • We have controlled the graphene surface in two ways to improve the device performance of optoelectronics based on graphene transparent conductive films. We controlled multilayer graphene (MLG) work function and localized surface plasmon resonance wavelength using a silver nanoparticles formed on graphene surface. Graphene substrates were prepared using a chemical vapor deposition and transfer process. Various size of silver nanoparticles were prepared using a thermal evaporator and post annealing process on graphene surface. Silver nanoparticles were confirmed by using scanning electron microscopy (SEM). Work functions of graphene surface with various sizes of Ag nanoparticles were measured using ultraviolet photoelectron spectroscopy (UPS). The result shows that the work functions of MLG could be controlled from 4.39 eV to 4.55 eV by coating different amounts of silver nanoparticles while minimal changes in the sheet resistance and transmittance. Also the Localized surface plasmon resonance (LSPR) wavelength was investigated according to various sizes of silver nanoparticles. LSPR wavelength was measured using the absorbance spectrum, and we confirmed that the resonance wavelength could be controlled from 396nm to 425nm according to the size of silver nanoparticles on graphene surface. To confirm improvement of the device performance, we fabricated the organic solar cell based on MLG electrode. The results show that the work function and plasmon resonance wavelength could be controlled to improve the performance of optoelectronics device.

  • PDF