DOI QR코드

DOI QR Code

Photoresponse Properties of Reduced Graphene Oxide/n-silicon Heterojunction Fabricated by the Vacuum Filtration and Transfer Method

  • Du, Yonggang (College of Science, China University of Petroleum East China (UPC)) ;
  • Qiao, Liangxin (College of Science, China University of Petroleum East China (UPC)) ;
  • Xue, Dingyuan (College of Science, China University of Petroleum East China (UPC)) ;
  • Jia, Yulei (College of Science, China University of Petroleum East China (UPC))
  • Received : 2022.01.01
  • Accepted : 2022.05.17
  • Published : 2022.08.25

Abstract

A photodetector based on a reduced graphene oxide (RGO)/n-Si heterojunction with high responsivity, detectivity and fast response speed is presented. Here, we put forward a simple vacuum filtration method to prepare RGO film and transfer it onto an n-Si substrate to form an RGO/n-Si heterojunction. The experimental results show that the heterojunction has good rectification characteristics, and the response and recovery time are less than 0.31 s and 0.25 s, respectively. Under 470 nm light conditions at -2 V applied voltage, the responsivity and detectivity of the device are 65 mA/W and 4.02 × 1010 cmHz1/2W-1, respectively. The simple preparation process and good performance of the RGO/n-Si heterojunction make it a promising material for photoelectric detection, especially in the near-ultraviolet band.

Keywords

Acknowledgement

Fundamental Research Funds for the Central Universities (19CX02053A); National Training Program of Innovation and Entrepreneurship for Undergraduates (202111041, 20190472, 202012077).

References

  1. P. Sun, M. Wang, L. Liu, L. Jiao, W. Du, F. Xia, M. Liu, W. Kong, L. Dong, and M. Yun, "Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers," Appl. Surf. Sci. 475, 342-347 (2019). https://doi.org/10.1016/j.apsusc.2018.12.283
  2. S. Lee, Y. Jo, S. Hong, D. Kim, and H. W. Lee, "Multilayered graphene electrode using one-step dry transfer for optoelectronics," Curr. Opt. Photonics 1, 7-11 (2017). https://doi.org/10.3807/COPP.2017.1.1.007
  3. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotechnol. 3, 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
  4. B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers," J. Appl. Polym. Sci. 131, 39628 (2014).
  5. K. Sarkar, M. Hossain, P. Devi, K. D. M. Rao, and P. Kumar, "Self-powered and broadband photodetectors with GaN: layered rGO hybrid heterojunction," Adv. Mater. Interfaces 6, 1900923 (2019). https://doi.org/10.1002/admi.201900923
  6. D. Dutta, S. K. Hazra, J. Das, C. K. Sarkar, and S. Basu, "Studies on p-TiO>2/n-graphene heterojunction for hydrogen detection," Sens. Actuator B: Chem. 212, 84-92 (2015). https://doi.org/10.1016/j.snb.2015.02.009
  7. Y.-H. Shih, Y.-L. Chen, J.-H. Tan, S. H. Chang, W.-Y. Uen, S.-L. Chen, M.-Y. Lin, Y.-C. Chen, and W.-C. Tu, "Low-power, large-area and high-performance CdSe quantum dots/reduced graphene oxide photodetector," IEEE Access 8, 95855-95863 (2020). https://doi.org/10.1109/access.2020.2995676
  8. Y. Du, Q. Xue, Z. Zhang, F. Xia, Z. Liu, and W. Xing, "Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO>2/Si heterostructure," AIP Adv. 5, 027136 (2015). https://doi.org/10.1063/1.4913953
  9. D.-T. Phan and G.-S. Chung, "P-n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si (111)," J. Phys. Chem. Solids 74, 1509-1514 (2013). https://doi.org/10.1016/j.jpcs.2013.02.007
  10. H.-M. Ju, S. H. Huh, S.-H. Choi, and H.-L. Lee, "Structures of thermally and chemically reduced graphene," Mater. Lett. 64, 357-360 (2010). https://doi.org/10.1016/j.matlet.2009.11.016
  11. J. Wu, X. Shen, L. Jiang, K. Wang, and K. Chen, "Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites," Appl. Surf. Sci. 256, 2826-2830 (2010). https://doi.org/10.1016/j.apsusc.2009.11.034
  12. L. Tang, H. Feng, J. Cheng, and J. Li, "Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing," Chem. Commun. 46, 5882-5884 (2010). https://doi.org/10.1039/c0cc01212b
  13. X. Li, W. Feng, X. Zhang, S. Lin, Y. Chen, C. Chen, S. Chen, W. Wang, and Y. Zhang, "Facile fabrication of laser-scribed-graphene humidity sensors by a commercial DVD drive," Sensors Actuat. B: Chem. 321, 128483 (2020). https://doi.org/10.1016/j.snb.2020.128483
  14. C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, and L.-J. Li, "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors," ACS nano 4, 5285-5292 (2010). https://doi.org/10.1021/nn101691m
  15. L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, and W. Zhang, "Electrical and photovoltaic characteristics of MoS>2/Si p-n junctions," J. Appl. Phys. 117, 114502 (2015). https://doi.org/10.1063/1.4915951
  16. M. Yalcin, D. Ozmen, and F. Yakuphanoglu, "Perovskite cobaltates/p-silicon heterojunction photodiodes," J. Alloys Compd. 796, 243-254 (2019). https://doi.org/10.1016/j.jallcom.2019.05.014
  17. M. Zhu, X. Li, Y. Guo, X. Li, P. Sun, X. Zang, K. Wang, M. Zhong, D. Wu, and H. Zhu, "Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes," Nanoscale 6, 4909-4914 (2014). https://doi.org/10.1039/c4nr00056k
  18. L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, "Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector," ACS Appl. Mater. Interfaces 5, 9362-9366 (2013). https://doi.org/10.1021/am4026505
  19. L. Z. Hao, W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, J. Zhu, and Y. R. Li, "High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells," Nanoscale 7, 8304-8308 (2015). https://doi.org/10.1039/C5NR01275A
  20. M. Patel, I. Mukhopadhyay, and A. Ray, "Study of the junction and carrier lifetime properties of a spray-deposited CZTS thin-film solar cell," Semicond. Sci. Technol. 28, 055001 (2013). https://doi.org/10.1088/0268-1242/28/5/055001
  21. D. Seo, W.-B. Kwon, S. C. Kim, and C.-S. Park, "Frequency response estimation of 1.3 ㎛ waveguide integrated vertical PIN Type Ge-on-Si photodetector based on the analysis of fringing field in intrinsic region," Curr. Opt. Photonics 3, 510-515 (2019). https://doi.org/10.3807/COPP.2019.3.6.510
  22. T. Yang, L. Du, C. Zhai, Z. Li, Q. Zhao, Y. Luo, D. Xing, and M. Zhang, "Ultrafast response and recovery trimethylamine sensor based on α-Fe2O3 snowflake-like hierarchical architectures," J. Alloys Compd. 718, 396-404 (2017). https://doi.org/10.1016/j.jallcom.2017.05.227
  23. S. Kim, D. H. Shin, J. Kim, C. W. Jang, S. S. Kang, J. M. Kim, J. H. Kim, D. H. Lee, J. H. Kim, S.-H. Choi, and S. W. Hwang, "Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity," Sci. Rep. 6, 27145 (2016). https://doi.org/10.1038/srep27145
  24. X. Fang, L. Hu, K. Huo, B. Gao, L. Zhao, M. Liao, P. K. Chu, Y. Bando, and D. Golberg, "New ultraviolet photodetector based on individual Nb2O5 nanobelts," Adv. Funct. Mater. 21, 3907-3915 (2011). https://doi.org/10.1002/adfm.201100743
  25. W. Zhao, L. Liu, M. Xu, X. Wang, T. Zhang, Y. Wang, Z. Zhang, S. Qin, and Zheng Liu, "Single CdS nanorod for high responsivity UV-visible photodetector," Adv. Opt. Mater. 5, 1700159 (2017). https://doi.org/10.1002/adom.201700159
  26. N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand, P. Pal, S. P. Singh, and S. P. Khanna, "Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes," Appl. Phys. Lett. 109, 242102 (2016). https://doi.org/10.1063/1.4971982
  27. P. S. Abid, C. M. Julien, and S. S. Islam, "WS>2 quantum dots on e-textile as a wearable UV photodetector: how well reduced graphene oxide can serve as a carrier transport medium?," ACS Appl. Mater. Interfaces 12, 39730-39744 (2020). https://doi.org/10.1021/acsami.0c08028
  28. X. X. Yu, H. Yin, H. X. Li, H. Zhao, C. Li, and M. Q. Zhu, "A novel high-performance self-powered UV-vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation," J. Mater. Chem. C 6, 630-636 (2018). https://doi.org/10.1039/C7TC05224C
  29. P. Joshna, S. R. Gollu, P. M. P. Raj, B. V. V. S. N. P. Rao, P. Sahatiya, and S. Kundu, "Plasmonic Ag nanoparticles arbitrated enhanced photodetection in p-NiO/n-rGO heterojunction for future self-powered UV photodetectors," Nanotechnology 30, 365201 (2019). https://doi.org/10.1088/1361-6528/ab261b
  30. S. Liu, B. Li, H. Kan, H. Liu, B. Xie, X. Zhu, Y. Hu, and S. Jiang, "Low temperature in-situ preparation of reduced graphene oxide/ZnO nanocomposites for highly sensitive photodetectors," J. Mater. Sci.: Mater. Electron. 28, 9403-9409 (2017). https://doi.org/10.1007/s10854-017-6681-4
  31. E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," Semicond. Sci. Technol. 18, R33-R51 (2003). https://doi.org/10.1088/0268-1242/18/1/305
  32. G. Li, L. Liu, G. Wu, W. Chen, S. Qin, Y. Wang, and T. Zhang, "Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction," Small 12, 5019-5026 (2016). https://doi.org/10.1002/smll.201600835
  33. W. Deng, Y. Wang, C. You, Y. Chen, and Y. Zhang, "Field enhanced in-plane homostructure in a pure MoSe2 phototransistor for the efficient separation of photo-excited carriers," J. Mater. Chem. C 7, 1182-1187 (2019). https://doi.org/10.1039/C8TC04783A