KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.10
/
pp.5171-5189
/
2016
With the popularity of cloud computing, many data owners outsource their graph data to the cloud for cost savings. The cloud server is not fully trusted and always wants to learn the owners' contents. To protect the information hiding, the graph data have to be encrypted before outsourcing to the cloud. The adjacent vertex search is a very common operation, many other operations can be built based on the adjacent vertex search. A boolean adjacent vertex search is an important basic operation, a query user can get the boolean search results. Due to the graph data being encrypted on the cloud server, a boolean adjacent vertex search is a quite difficult task. In this paper, we propose a solution to perform the boolean adjacent vertex search over encrypted graph data in cloud computing (BASG), which maintains the query tokens and search results privacy. We use the Gram-Schmidt algorithm and achieve the boolean expression search in our paper. We formally analyze the security of our scheme, and the query user can handily get the boolean search results by this scheme. The experiment results with a real graph data set demonstrate the efficiency of our scheme.
This paper introduces a search method based on conceptual graph. A hyperlink information is essential to construct conceptual graph in web. The information is very useful as it provides summary and further linkage to construct conceptual graph that has been provided by human. It also has a property which shows review, relation, hierarchy, generality, and visibility. Using this property, we extracted the keywords of web documents and made up of the conceptual graph among the keywords sampled from web pages. This paper extracts the keywords of web pages using anchor text one out of hyperlink information and makes hyperlink of web pages abstract as the link relation between keywords of each web page. 1 suggest this useful search method providing querying word extension or domain knowledge by conceptual graph of keywords. Domain knowledge was conceptualized knowledged as the conceptual graph. Then it is not listing web documents which is the defect of previous search system. And it gives the index of concept associating with querying word.
KIPS Transactions on Software and Data Engineering
/
v.3
no.3
/
pp.119-124
/
2014
Let G = (V, E) be a graph. Maximum Bipartite Subgraph Problem is to convert a graph G into a bipartite graph by removing minimum number of edges. This problem belongs to NP-complete; hence, in this research, we are suggesting a new metaheuristic algorithm which combines Tabu search and GRASP.
Kim, Jin-Il;Kwon, Yoo-Jin;Kim, Jin-Wook;Kim, Sung-Ryul;Park, Kun-Soo
Journal of KIISE:Computer Systems and Theory
/
v.37
no.1
/
pp.27-34
/
2010
Web crawlers are fundamental programs which iteratively download web pages by following links of web pages starting from a small set of initial URLs. Previously several web crawling orderings have been proposed to crawl popular web pages in preference to other pages, but some graph search techniques whose characteristics and efficient implementations had been studied in graph theory community have not been applied yet for web crawling orderings. In this paper we consider various graph search techniques including lexicographic breadth-first search, lexicographic depth-first search and maximum cardinality search as well as well-known breadth-first search and depth-first search, and then choose effective web crawling orderings which have linear time complexity and crawl popular pages early. Especially, for maximum cardinality search and lexicographic breadth-first search whose implementations are non-trivial, we propose linear-time web crawling orderings by applying the partition refinement method. Experimental results show that maximum cardinality search has desirable properties in both time complexity and the quality of crawled pages.
Considerable attention has been given to processing graph data in recent years. An efficient method for computing the node proximity is one of the most challenging problems for many applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and user queries, top-k query processing has gained significant interest. This paper presents a novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized PageRank (PPR). First, we introduce a distribution state transition graph (DSTG) to depict iterative steps for solving the PPR equation. Second, we propose a weight distribution model of a DSTG to capture the states of intermediate PPR scores and their distribution. Using a DSTG, we can selectively follow and compare multiple random paths with different lengths to find the most promising nodes. Moreover, we prove that the results of our method are equivalent to the PPR results. Comparative performance studies using two real datasets clearly show that our method is practical and accurate.
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.649-654
/
2023
This paper proposes the design of a neural network structure search model using graph convolutional neural networks. Deep learning has a problem of not being able to verify whether the designed model has a structure with optimized performance due to the nature of learning as a black box. The neural network structure search model is composed of a recurrent neural network that creates a model and a convolutional neural network that is the generated network. Conventional neural network structure search models use recurrent neural networks, but in this paper, we propose GC-NAS, which uses graph convolutional neural networks instead of recurrent neural networks to create convolutional neural network models. The proposed GC-NAS uses the Layer Extraction Block to explore depth, and the Hyper Parameter Prediction Block to explore spatial and temporal information (hyper parameters) based on depth information in parallel. Therefore, since the depth information is reflected, the search area is wider, and the purpose of the search area of the model is clear by conducting a parallel search with depth information, so it is judged to be superior in theoretical structure compared to GC-NAS. GC-NAS is expected to solve the problem of the high-dimensional time axis and the range of spatial search of recurrent neural networks in the existing neural network structure search model through the graph convolutional neural network block and graph generation algorithm. In addition, we hope that the GC-NAS proposed in this paper will serve as an opportunity for active research on the application of graph convolutional neural networks to neural network structure search.
The Transactions of the Korea Information Processing Society
/
v.3
no.4
/
pp.926-937
/
1996
A graph traversal technique is a certain pattern of visiting nodes of a graph. Many special traversal techniques have been applied to solve graph related problems. For example, the depth first search technique has been used for finding strongly onnected components of a directed graph or biconnected components of a general graph. The distributed protocol to implement his depth first search technique on the distributed network can be divided into a fixed topology problem where there is no topological change and a dynamic topology problem which has some topological changes. Therefore, in this paper, we present a more efficient distributed depth first search protocol with fixed topology and a resilient distributed depth first search protocol where there are topological changes for the distributed network. Also, we analysed the message and time complexity of the presented protocols and showed the improved results than the complexities of the other distributed depth first search protocols.
Realtime assignment of railways is an important component in the railway control systems. To solve this problem, we must exactly represent the track topology. Graph is a proper data structure for representing general network topologies, but not Proper for track topologies. In this paper, we define a new data structure, railway graph, which can exactly represent topologies of railway networks. And we describe a path search algorithm in the defined railway graph, and a top-down approach for designing railway network by the Proposed graph.
Recently, as graph-structured data is widely used in various fields such as social networks and semantic Webs, needs for an effective and efficient search on a large amount of graph data have been increasing. Previous keyword-based search methods often find results by considering only the relevance to a given query. However, they are likely to produce semantically similar results by selecting answers which have high query relevance but share the same content nodes. To improve the diversity of search results, we propose a top-k search method that finds a set of subtrees which are not only relevant but also diverse in terms of the content nodes by controlling their similarity. We define a criterion for a set of diverse answer trees and design two kinds of diversified top-k search algorithms which are based on incremental enumeration and A⁎ heuristic search, respectively. We also suggest an improvement on the A⁎ search algorithm to enhance its performance. We show by experiments using real data sets that the proposed heuristic search method can find relevant answers with diverse content nodes efficiently.
In this paper, we consider the problem of exploring unknown environments with a mobile robot or an autonomous character agent. Traditionally, research efforts to address the space exploration problem havefocused on the graph-based space representations and the graph search algorithms. Recently EXPLORE, one of the most efficient search algorithms, has been discovered. It traverses at most min$min(mn, d^2+m)$ edges where d is the deficiency of a edges and n is the number of edges and n is the number of vertices. In this paper, we propose DFS-RTA* and DFS-PHA*, two real-time graph search algorithms for directing an autonomous agent to explore in an unknown space. These algorithms are all built upon the simple depth-first search (DFS) like EXPLORE. However, they adopt different real-time shortest path-finding methods for fast backtracking to the latest node, RTA* and PHA*, respectively. Through some experiments using Unreal Tournament, a 3D online game environment, and KGBot, an intelligent character agent, we analyze completeness and efficiency of two algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.