• Title/Summary/Keyword: Graph Retrieval

Search Result 55, Processing Time 0.022 seconds

A Study of Automatic Ontology Building by Web Information Extraction and Natural Language Processing (웹 문서 정보추출과 자연어처리를 통한 온톨로지 자동구축에 관한 연구)

  • Kim, Myung-Gwan;Lee, Young-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2009
  • The proliferation of the Internet grows, according to electronic documents, along with increasing importance of technology in information retrieval. This research is possible to build a more efficient and accurate knowledge-base with unstructured text documents from the Web using to extract knowledge of the core meaning of LGG (Local Grammar Graph). We have built a ontology based on OWL(Web Ontology Language) using the areas of particular stocks up/down patterns created by the extraction and grammar patterns. It is possible for the user can search for meaning and quality of information about the user wants.

  • PDF

Text Extraction and Summarization from Web News (웹 뉴스의 기사 추출과 요약)

  • Han, Kwang-Rok;Sun, Bok-Keun;Yoo, Hyoung-Sun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.1-10
    • /
    • 2007
  • Many types of information provided through the web including news contents contain unnecessary clutters. These clutters make it difficult to build automated information processing systems such as the summarization, extraction and retrieval of documents. We propose a system that extracts and summarizes news contents from the web. The extraction system receives news contents in HTML as input and builds an element tree similar to DOM tree, and extracts texts while removing clutters with the hyperlink attribute in the HTML tag from the element tree. Texts extracted through the extraction system are transferred to the summarization system, which extracts key sentences from the texts. We implement the summarization system using co-occurrence relation graph. The summarized sentences of this paper are expected to be transmissible to PDA or cellular phone by message services such as SMS.

  • PDF

Ontology Knowledge based Information Retrieval for User Query Interpretation (사용자 질의 의미 해석을 위한 온톨로지 지식 기반 검색)

  • Kim, Nanju;Pyo, Hyejin;Jeong, Hoon;Choi, Euiin
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.245-252
    • /
    • 2014
  • Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. But, the ordinary users don't know well the complex formal query language and schema of the knowledge base. So, the system should interpret the meaning of user's keywords. In this paper, we describe a user query interpretation system for the semantic retrieval of multimedia contents. Our system is ontological knowledge base-driven in the sense that the interpretation process is integrated into a unified structure around a knowledge base, which is built on domain ontologies.

The Effects of Occupation-based Training With Errorless Learning and Spaced Retrieval on Task Learning and Satisfaction of People With Mild Vascular Dementia: Single Subject Research (오차배제학습과 시간차회상을 이용한 작업기반 훈련이 경도 혈관성 치매환자의 과제 수행능력과 만족도에 미치는 영향: 개별실험 연구)

  • Lee, Eun-Young;Park, Hae Yean;Kim, Jong-Bae;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.1
    • /
    • pp.51-62
    • /
    • 2018
  • Objective : This study was to verify the effects of occupation-based training with errorless learning and spaced retrieval on task learning and satisfaction of elderly with mild vascular dementia. Methods : The subjects of this study were 3 geriatric individuals with mild vascular dementia, ABA' + follow-up design was used. Intervention period was provided occupation-based training with errorless learning and spaced retrieval. The dependent variable was converted to ability of task performance every session and satisfaction before and after intervention. Result analysis was suggested through visual analysis and bar graph. Results : After the occupation-based training with errorless learning and spaced retrieval, Ability of task performance and satisfaction improved for all subjects. Conclusions : From this study, occupation-based training with errorless learning and spaced retrieval training was found to be an effective mediation for improving independence of task and satisfaction for people with mild dementia. This study could provide evidence for clinical application for occupation-based training.

Graph Representation by Medial Axis Transform Image for 3D Retrieval (3차원 영상 검색을 위한 중심축 변환에 의한 그래프 표현 기법)

  • Kim, Deok-Hun;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.33-42
    • /
    • 2001
  • Recently, the interests in the 3D image, generated from the range data and CAD, have exceedingly increased, accordingly a various 3D image database is being constructed. The efficient and fast scheme to access the desired image data is the important issue in the application area of the Internet and digital library. However, it is difficult to manage the 3D image database because of its huge size. Therefore, a proper descriptor is necessary to manage the data efficiently, including the content-based search. In this paper, the proposed shape descriptor is based on the voxelization of the 3D image. The medial axis transform, stemming from the mathematical morphology, is performed on the voxelized 3D image and the graph, which is composed of node and edge, is generated from skeletons. The generated graph is adequate to the novel shape descriptor due to no loss of geometric information and the similarity of the insight of the human. Therefore the proposed shape descriptor would be useful for the recognition of 3D object, compression, and content-based search.

  • PDF

Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity (잠정적 부적합 문서와 어휘 근접도를 반영한 어휘 그래프 기반 질의 확장)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.189-194
    • /
    • 2012
  • In this paper, we propose a query expansion method based on word graphs using pseudo-relevant and pseudo non-relevant documents to achieve performance improvement in information retrieval. The initially retrieved documents are classified into a core cluster when a document includes core query terms extracted by query term combinations and the degree of query term proximity. Otherwise, documents are classified into a non-core cluster. The documents that belong to a core query cluster can be seen as pseudo-relevant documents, and the documents that belong to a non-core cluster can be seen as pseudo non-relevant documents. Each cluster is represented as a graph which has nodes and edges. Each node represents a term and each edge represents proximity between the term and a query term. The term weight is calculated by subtracting the term weight in the non-core cluster graph from the term weight in the core cluster graph. It means that a term with a high weight in a non-core cluster graph should not be considered as an expanded term. Expansion terms are selected according to the term weights. Experimental results on TREC WT10g test collection show that the proposed method achieves 9.4% improvement over the language model in mean average precision.

Semantic Process Retrieval with Similarity Algorithms (유사도 알고리즘을 활용한 시맨틱 프로세스 검색방안)

  • Lee, Hong-Joo;Klein, Mark
    • Asia pacific journal of information systems
    • /
    • v.18 no.1
    • /
    • pp.79-96
    • /
    • 2008
  • One of the roles of the Semantic Web services is to execute dynamic intra-organizational services including the integration and interoperation of business processes. Since different organizations design their processes differently, the retrieval of similar semantic business processes is necessary in order to support inter-organizational collaborations. Most approaches for finding services that have certain features and support certain business processes have relied on some type of logical reasoning and exact matching. This paper presents our approach of using imprecise matching for expanding results from an exact matching engine to query the OWL(Web Ontology Language) MIT Process Handbook. MIT Process Handbook is an electronic repository of best-practice business processes. The Handbook is intended to help people: (1) redesigning organizational processes, (2) inventing new processes, and (3) sharing ideas about organizational practices. In order to use the MIT Process Handbook for process retrieval experiments, we had to export it into an OWL-based format. We model the Process Handbook meta-model in OWL and export the processes in the Handbook as instances of the meta-model. Next, we need to find a sizable number of queries and their corresponding correct answers in the Process Handbook. Many previous studies devised artificial dataset composed of randomly generated numbers without real meaning and used subjective ratings for correct answers and similarity values between processes. To generate a semantic-preserving test data set, we create 20 variants for each target process that are syntactically different but semantically equivalent using mutation operators. These variants represent the correct answers of the target process. We devise diverse similarity algorithms based on values of process attributes and structures of business processes. We use simple similarity algorithms for text retrieval such as TF-IDF and Levenshtein edit distance to devise our approaches, and utilize tree edit distance measure because semantic processes are appeared to have a graph structure. Also, we design similarity algorithms considering similarity of process structure such as part process, goal, and exception. Since we can identify relationships between semantic process and its subcomponents, this information can be utilized for calculating similarities between processes. Dice's coefficient and Jaccard similarity measures are utilized to calculate portion of overlaps between processes in diverse ways. We perform retrieval experiments to compare the performance of the devised similarity algorithms. We measure the retrieval performance in terms of precision, recall and F measure? the harmonic mean of precision and recall. The tree edit distance shows the poorest performance in terms of all measures. TF-IDF and the method incorporating TF-IDF measure and Levenshtein edit distance show better performances than other devised methods. These two measures are focused on similarity between name and descriptions of process. In addition, we calculate rank correlation coefficient, Kendall's tau b, between the number of process mutations and ranking of similarity values among the mutation sets. In this experiment, similarity measures based on process structure, such as Dice's, Jaccard, and derivatives of these measures, show greater coefficient than measures based on values of process attributes. However, the Lev-TFIDF-JaccardAll measure considering process structure and attributes' values together shows reasonably better performances in these two experiments. For retrieving semantic process, we can think that it's better to consider diverse aspects of process similarity such as process structure and values of process attributes. We generate semantic process data and its dataset for retrieval experiment from MIT Process Handbook repository. We suggest imprecise query algorithms that expand retrieval results from exact matching engine such as SPARQL, and compare the retrieval performances of the similarity algorithms. For the limitations and future work, we need to perform experiments with other dataset from other domain. And, since there are many similarity values from diverse measures, we may find better ways to identify relevant processes by applying these values simultaneously.

XH-DQN: Fact verification using a combined model of graph transformer and DQN (XH-DQN: 사실 검증을 위한 그래프 Transformer와 DQN 결합 모델)

  • Seo, Mintaek;Na, Seung-Hoon;Shin, Dongwook;Kim, Seon-Hoon;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.227-232
    • /
    • 2021
  • 사실 검증(Fact verification) 문제는 문서 검색(Document retrieval), 증거 선택(Evidence selection), 증거 검증(Claim verification) 3가지 단계로 구성되어있다. 사실 검증 모델들의 주요 관심사인 증거 검증 단계에서 많은 모델이 제안되는 가운데 증거 선택 단계에 집중하여 강화 학습을 통해 해결한 모델이 제안되었다. 그래프 기반의 모델과 강화 학습 기반의 사실 검증 모델을 소개하고 각 모델을 한국어 사실 검증에 적용해본다. 또한, 두 모델을 같이 사용하여 각 모델의 장점을 가지는 부분을 병렬적으로 결합한 모델의 성능과 증거의 구성 단위에 따른 성능도 비교한다.

  • PDF

A Study on the Visual Representation of TREC Text Documents in the Construction of Digital Library (디지털도서관 구축과정에서 TREC 텍스트 문서의 시각적 표현에 관한 연구)

  • Jeong, Ki-Tai;Park, Il-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2004
  • Visualization of documents will help users when they do search similar documents. and all research in information retrieval addresses itself to the problem of a user with an information need facing a data source containing an acceptable solution to that need. In various contexts. adequate solutions to this problem have included alphabetized cubbyholes housing papyrus rolls. microfilm registers. card catalogs and inverted files coded onto discs. Many information retrieval systems rely on the use of a document surrogate. Though they might be surprise to discover it. nearly every information seeker uses an array of document surrogates. Summaries. tables of contents. abstracts. reviews, and MARC recordsthese are all document surrogates. That is, they stand infor a document allowing a user to make some decision regarding it. whether to retrieve a book from the stacks, whether to read an entire article, etc. In this paper another type of document surrogate is investigated using a grouping method of term list. lising Multidimensional Scaling Method (MDS) those surrogates are visualized on two-dimensional graph. The distances between dots on the two-dimensional graph can be represented as the similarity of the documents. More close the distance. more similar the documents.

Image Classification Using Bag of Visual Words and Visual Saliency Model (이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류)

  • Jang, Hyunwoong;Cho, Soosun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.547-552
    • /
    • 2014
  • As social multimedia sites are getting popular such as Flickr and Facebook, the amount of image information has been increasing very fast. So there have been many studies for accurate social image retrieval. Some of them were web image classification using semantic relations of image tags and BoVW(Bag of Visual Words). In this paper, we propose a method to detect salient region in images using GBVS(Graph Based Visual Saliency) model which can eliminate less important region like a background. First, We construct BoVW based on SIFT algorithm from the database of the preliminary retrieved images with semantically related tags. Second, detect salient region in test images using GBVS model. The result of image classification showed higher accuracy than the previous research. Therefore we expect that our method can classify a variety of images more accurately.