Considerable attention has been given to processing graph data in recent years. An efficient method for computing the node proximity is one of the most challenging problems for many applications such as recommendation systems and social networks. Regarding large-scale, mutable datasets and user queries, top-k query processing has gained significant interest. This paper presents a novel method to find top-k answers in a node proximity search based on the well-known measure, Personalized PageRank (PPR). First, we introduce a distribution state transition graph (DSTG) to depict iterative steps for solving the PPR equation. Second, we propose a weight distribution model of a DSTG to capture the states of intermediate PPR scores and their distribution. Using a DSTG, we can selectively follow and compare multiple random paths with different lengths to find the most promising nodes. Moreover, we prove that the results of our method are equivalent to the PPR results. Comparative performance studies using two real datasets clearly show that our method is practical and accurate.
In this paper, we propose a matrix star graph which improves the network cost of the well-known star grah as an interconnection network. We analyze its characteristics in terms of the network parameters, such as degree, scalability, routing, and diameter. The proposed matrix star graph MS2,n has the half degrees of a star graph S2n with the same number of nodes and is an interconnection network with the properties of node symmetry, maximum fault tolerance, and recursive structure. In network cost, a matrix star graph MS2,n and a star graph S2n are about 3.5n2 and 6n2 respectively which means that the former has a better value by a certain constant than the latter has.
Communications for Statistical Applications and Methods
/
제27권5호
/
pp.569-578
/
2020
Various graph clustering methods have been introduced to identify communities in social or biological networks. This paper studies the entropy-based and the Markov chain-based methods in clustering the undirected graph. We examine the performance of two clustering methods with conventional methods based on quality measures of clustering. For the real applications, we collect the mathematical subject classification (MSC) codes of research papers from published mathematical databases and construct the weighted code-to-document matrix for applying graph clustering methods. We pursue to group MSC codes into the same cluster if the corresponding MSC codes appear in many papers simultaneously. We compare the MSC clustering results based on the several assessment measures and conclude that the Markov chain-based method is suitable for clustering the MSC codes.
Jang, Sungjun;Bae, Han Byeol;Lee, HeanSung;Lee, Sangyoun
한국정보전자통신기술학회논문지
/
제14권4호
/
pp.314-322
/
2021
Skeleton-based action recognition has attracted considerable attention in human action recognition. Recent methods for skeleton-based action recognition employ spatiotemporal graph convolutional networks (GCNs) and have remarkable performance. However, most of them have heavy computational complexity for robust action recognition. To solve this problem, we propose a shuffle graph convolutional network (SGCN) which is a lightweight graph convolutional network using pointwise group convolution rather than pointwise convolution to reduce computational cost. Our SGCN is composed of spatial and temporal GCN. The spatial shuffle GCN contains pointwise group convolution and part shuffle module which enhances local and global information between correlated joints. In addition, the temporal shuffle GCN contains depthwise convolution to maintain a large receptive field. Our model achieves comparable performance with lowest computational cost and exceeds the performance of baseline at 0.3% and 1.2% on NTU RGB+D and NTU RGB+D 120 datasets, respectively.
온라인 소셜 네트워크가 현대인의 정보 공유 및 교류의 핵심적인 매체로 사용됨에 따라, 그 이용자는 매해 급격하게 증가하고 있다. 이는 단순히 사용량 증가뿐만 아니라 정보의 신뢰성에서도 기존 언론 매체를 능가하기도 하는데, 최근 등장하는 마케팅 전략들은 이 점을 노리고 교묘하게 소셜 네트워크를 공격하고 있다. 그에 따라 자연스럽게 형성되어야 할 여론이 온라인 공격으로 인해 인위적으로 구성되기도 하고, 이를 신뢰하는 사람들도 많아지게 되었다. 따라서 온라인 소셜 네트워크를 공격하는 주체들을 탐지하고자 하는 연구들이 최근 많이 진행되고 있다. 본 논문에서는 이러한 온라인 소셜 네트워크 공격자들을 탐지하고자 하는 연구들의 동향을 분석하는데, 그 중 소셜 네트워크 그래프 특성을 이용한 연구들에 집중하고 있다. 기존의 contents-based 기법이 사생활 침해 및 공격 전략 변화에 따른 분류 오류를 나타낼 수 있음에 반해, 그래프 기반 방법은 공격자 패턴을 이용하여 보다 강건한 탐지 방법을 제안하고 있다.
본 연구에서는 포인터 네트워크 모델을 의존 구문 분석에 맞게 확장한 스택-포인터 네트워크 모델을 이용하여 한국어 의존 구문 분석기를 구현한다. 스택-포인터 네트워크 모델 기반 의존 구문 분석기는 인코더-디코더로 구성되어 있으며 다른 의존 구문 분석기와 달리 내부 스택을 갖고 있어 루트부터 시작하는 하향식 구문 분석이 가능하다. 디코더의 각 단계에서는 의존소를 찾기 위해 부모 노드뿐만 아니라 이미 파생된 트리 구조에서 조부모와 형제 노드를 참조할 수 있다. 기존 연구에서는 단순하게 해당 노드들의 합을 계산하여 입력으로 사용하였고, 형제 노드의 경우에는 가장 최근에 방문했던 것만을 사용할 수 있었다. 본 연구에서는 그래프 어텐션 네트워크를 도입하여 이미 파생된 부분 트리를 표현하고 이를 스택-포인터 네트워크의 입력으로 사용하도록 구문 분석기를 수정한다. 세종 코퍼스와 모두의 코퍼스를 대상을 실험한 결과 레이어 2의 그래프 어텐션 네트워크를 이용하여 부분 트리를 표현했을 때 특히 문장 단위의 구문 분석 정확도에서 많은 성능 향상을 확인할 수 있었다.
빅데이터와 소셜 네트워크의 발전과 더불어 거대한 그래프를 처리하는 연구도 활발하게 진행되고 있다. 최근 그래프 처리의 성능 향상을 위해 Gorder 라는 그래프 오더링 기법이 제안되었다. 이 기법은 메모리 상의 그래프 레이아웃을 변형하여 데이터 접근 패턴을 CPU 캐시에 적합하게 바꿈으로써 성능을 향상시킨다. 하지만 그래프 알고리즘의 캐시 지역성에만 초점을 두고 설계되었기 때문에 디스크 기반 그래프 엔진에서는 적합하지 않고 전처리 비용도 크다는 문제점이 있다. 제시한 문제점을 해결하기 위해, 본 논문에서는 새로운 그래프 오더링인 I/O Order를 제안하였다. I/O Order는 디스크 기반의 그래프 엔진에서 지역성 외에 입출력 부하를 고려하여 설계되었다. 또한, 오더링 비용을 줄이기 위해 간단한 scheme을 사용한다. 본 논문에서 제시된 I/O Order는 Gorder와 비교해 전처리 비용이 최대 9.6배 감소하였고 성능은 지역성이 낮은 그래프 알고리즘에서 Random 대비 최대 2배 이상 향상되었다.
이 논문에서는 지리적 표현이 보강된 사회네트워크 모형을 제시하고, 이 모형을 통해 사회네트워크의 지리적 맥락을 시각화하는 3D 웹서비스를 구현한다. 이 연구에서 제안하는 사회네트워크 그래프 개선의 핵심요소는 (i) 네트워크 노드들의 상호작용 강도 및 공간적 인접성이 반영된 '지리적 가중치가 부여된 중심화 지수' 그리고 (ii) 이러한 중심화 지수를 3차원 심볼을 이용하여 표현함과 동시에 네트워크 노드들을 단계 구분도와 중첩하여 시각화하는 '지도와 결합된 사회네트워크 그래프'이다 개선된 사회네트워크 그래프는 X3D (Extensible 3D)를 이용하여 구현하였으며, 시도간 R&D 협력의 사례분석을 통해 그 적용가능성이 확인되었다. 이 논문에서 제시하는 방법론은 사회네트워크에 내재하는 공간적 집중화의 경향 등 기존의 네트워크 분석에서 간과되었던 사회네트워크의 지리적 맥락에 대한 시각적 단서를 제공한다.
각종 기기들이 연결되는 사물인터넷(internet of things) 시스템에서 중요한 부품의 고장은 경제적, 인명의 손실을 야기할 수 있다. 시스템 내에서 발생하는 고장으로 인한 손실을 줄이기 위해 고장 검진 기술이 IoT에서 중요한 기술로써 여겨지고 있다. 본 논문에서는 그래프 신경망 기반 방법을 사용하여 시스템 내의 설비에서 취득된 진동 데이터의 특징을 추출하여 고장 여부를 판단하고 유형을 분류하는 방법을 제안한다. 딥러닝 모델의 학습을 위해, CWRU(case western reserve university)에서 취득된 고장 데이터 셋을 입력 데이터로 사용한다. 제안하는 모델의 분류 정확도 성능을 확인하기 위해 기존 제안된 합성곱 신경망(convolutional neural networks) 기반 분류 모델과 제안된 모델을 비교한다. 시뮬레이션 결과, 제안된 모델은 불균등하게 나누어진 데이터에서 기존 모델보다 분류 정확도를 약 5% 향상 시킬 수 있는 것을 확인하였다. 이후 연구로, 제안하는 모델을 경량화해서 분류 속도를 개선할 예정이다.
본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.