본 논문에서는 그래프 신경망을 이용한 수동소나 신호 분류 알고리즘을 제안한다. 제안하는 알고리즘은 스펙트로그램을 영상 패치로 분할하고, 인접 거리의 영상 패치 간 연결을 통해 그래프를 표현한다. 이후, 표현된 그래프를 이용하여 그래프 합성곱 신경망을 학습하고 신호를 분류한다. 공개된 수중 음향 데이터를 이용한 실험에서 제안된 알고리즘은 스펙트로그램의 선 주파수 특징을 그래프 형태로 표현하며, 92.50 %의 우수한 분류 정확도를 갖는다. 이러한 결과는 기존의 합성곱 신경망과 비교하여 8.15 %의 높은 분류 정확도를 갖는다.
데이터 스트림 환경에서 셋 이상의 스트림들에 대한 조인연산을 위해 순서를 선택하는 기존 기법들은 항상 간단한 휴리스틱 방법을 이용하였다 그러나 기존 기법들은 조인 선택도나 데이터 수신 비율과 같은 것만 고려하여 일반적인 응용에서 비효율적이며 낮은 성능을 갖는다. 본 논문에서는 최적의 조인 순서로 그래프 기반의 슬라이딩 윈도우 다중 조인 알고리즘을 제안한다. 이 기법에서 슬라이딩 윈도우 조인 그래프를 먼저 생성하는데, 정점(vertex)은 조인 연산으로 표현되고 엣지(edge)는 슬라이딩 윈도우들 사이의 조인관계를 나타낸다. 그리고 정점 가중치(vertex weight)와 엣지 가중치(edge weight)는 각각의 조인의 비용과 조인 연산들의 상호관계를 표현한다. 이때 데이터 스트림은 빠른 처리를 해야 하므로 메모리 기반의 그래프 기법을 사용한다. 이를 이용하여 최대값만을 이용하여 조인 연산을 수행하는 MVP 알고리즘을 개선하고 이의 그래프에서 최적의 조인 순서를 찾는다. 이를 통한 최종 결과는 중첩-루프(nested loop) 조인 계획을 수행하여 얻어진다. 성능비교를 통하여 제안기법이 기존 기법들보다 우수함을 증명한다.
이 논문에서는 빠른 하드웨어/소프트웨어 통합합성을 위해 데이타플로우 그래프(DFG: Dataflow Graph)로부터 하드웨어를 자동으로 합성하는 내용을 다룬다. 이 데이타플로우 그래프에서 로드는 FIR(Finite Impulse Response) 필터나 DCT(Discrete Cosine Transform) 블록과 같이 크기가 어느 정도 되는 하드웨어 블록을 나타내며, 이 노드의 포트는 한번 수행할 때마다 하나 이상의 데이타 샘플을 주고 받을 수 있다. 즉, 멀티레이트 데이타 샘플(multi-rate data sample)을 교환한다. 이러한 특성들은 기존의 Behavioral Synthesis와 구별되는 점이며, 따라서 Behavioral Synthesis보다 어려운 문제가 된다. 본 논문에서 제안하는 설계 방법을 사용하면 알고리즘을 명세하는 데이타플로우 그래프는 하드웨어 리소스의 할당과 스케줄 정보에 따라 다양한 하드웨어 구조로 매핑될 수 있다. 따라서 하드웨어 설계시에 면적/성능 트레이드오프 관계를 손쉽게 관리할 수 있으며, 하드웨어를 자동으로 합성하는 기존의 방식보다구현 가능한 하드웨어 설계 공간을 더욱 넓혀주는 효과를 거둘 수 있다.
4차 산업 혁명과 데이터 환경의 급격한 변화는 기존 관계형 데이터베이스(RDB)는 기술적 한계를 드러내고 있다. IDC/금융/보험 등 전 분야에서 비정형 데이터에 대한 새로운 분석방안으로 그래프 데이터베이스(GDB) 기술에 관심이 높아지고 있다. 그래프 데이터베이스는 상호 연동된 데이터를 표현하고 광범위한 네트워크에서 연관 관계 분석에 효율적인 기술이다. 본 연구는 기존 RDB를 GDB 모델로 확장하고, 새로운 이상징후 탐지를 위해 기계학습 알고리즘(패턴인식, 클러스터링, 경로거리, 핵심추출)을 적용하였다. 성능분석 결과 이상 행위 성능(약 180배 이상)이 크게 향상되었고, RDB로 분석 불가능한 5단계 이후 이상징후 패턴을 추출할 수 있음을 확인하였다.
최근 활발히 연구되는 딥러닝 방법론은 인공지능의 성능을 급속도로 향상시켰고, 이에 따라 다양한 산업 분야에서 딥러닝을 활용한 시스템이 제시되고 있다. 교통 시스템에서는 GNN을 활용한 공간-시간 그래프 모델링이 교통 속도 예측에 효과적인 것으로 밝혀졌지만, 이는 메모리 병목 현상을 유발하기 때문에 모델이 비효율적으로 학습된다는 단점이 있다. 따라서 본 연구에서는 그래프 분할 방법을 통해 도로 네트워크를 분할하여 메모리 병목 현상을 완화함과 동시에 우수한 성능을 달성하고자 한다. 제안 방법론을 검증하기 위해 인천시 UTIC 데이터 분석 결과를 바탕으로 Jensen-Shannon divergence를 사용하여 도로 속도 분포의 유사도를 측정하였다. 그리고 측정된 유사도를 바탕으로 스펙트럴 클러스터링을 수행하여 도로 네트워크를 군집화하였다. 성능 측정 결과, 도로 네트워크가 7개의 네트워크로 분할되었을 때 MAE 기준 5.52km/h의 오차로 비교 모델 대비 가장 우수한 정확도를 보임과 동시에 메모리 병목 현상 또한 완화되는 것을 확인할 수 있었다.
최근 소비자들은 환경, 사회, 지배구조 관련 정보를 확인하고 더 나은 사회적 가치와 환경 친화적인 제품을 선택하려는 경향이 증가되고 있다. 본 논문에서는 GraphSAGE와 GAT를 결합한 모델인 MultiSAGE를 활용하여 최근 소비 트렌드인 가치소비에 맞추어 ESG 지표를 적용한 상품 추천 시스템을 제안하였다. 이를 위하여 한국 ESG 기준원에서 수집한 2022년 1,033개 기업의 ESG 등급 데이터와 실제 N기업의 쇼핑의 상품 데이터를 Heterogeneous Graph 형식의 데이터로 바꾸는 데이터 처리 과정과 MultiSAGE를 적용하여 머신 러닝에 적용하고, 특정 상품을 입력하면 그 상품의 친환경 대체재를 추천해주는 추천 시스템을 구현하였다. 구현결과, 소비자들은 기업의 ESG지표를 적용한 제품을 쉽게 비교하여 구매할 수 있고, 이를 통해 사회적 가치와 환경친화적인 제품을 추천하는 시스템에 활용될 것으로 기대한다.
본 논문은 데이터 의존적인 CMOS 회로(예: DSP) 의 전력량을 감축하기 위한 상위 수준 합성 기법에 대한 연구이다. 상위수준 합성은 스케줄링, 자원 및 레지스터 할당의 세가지로 나우어서 수행한다. 스케줄링시의 저전력 설계의 목적은 자원할당 시 입력을 재 사용할 수 있는 가능성을 증가시키는 것이다. 스케줄링 후에 자원 및 레지스터 할당 문제는 가중차기 부가된 앙립 그래프로 표현하여 최소비용흐름 알고리즘을 수행함으로써 스위칭 동작횟수가 적은 해를 얻는다. 제안된 알고리즘은 저전력 레지스터 및 자원 할당 문제에 대하여 O({{{{ { n}^{3 } }}}}) (n은 그래프의 노드수) 시간에 최적해를 제공한다. 벤치마크 회로에 대한 실험 결과는 15%의 전력 감축 효과를 나타낸다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권5호
/
pp.2607-2627
/
2017
Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권5호
/
pp.2211-2232
/
2018
The unstructured and semi-structured big data in social network poses new challenges in query retrieval. This requirement needs to be met by introducing quality retrieval time measures like indexing. Due to the huge volume of data storage, there originate the need for efficient index algorithms to promote query processing. However, conventional algorithms fail to index the huge amount of frequently obtained information in real time and fall short of providing scalable indexing service. In this paper, a new LIndex algorithm, which is a heuristic on Lucene is built on Neo4jHA architecture that holds the social network Big data. LIndex is a flexible and simplified adaptive indexing scheme that ascendancy decomposed shortest paths around term neighbors as basic indexing unit. This newfangled index proves to be effectual in query space pruning of graph database Neo4j, scalable in index construction and deployment. A graph query is processed and optimized beyond the traditional Lucene in a time-based manner to a more efficient path method in LIndex. This advanced algorithm significantly reduces query fetch without compromising the quality of results in time. The experiments are conducted to confirm the efficiency of the proposed query retrieval in Neo4j graph NoSQL database.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권9호
/
pp.4788-4813
/
2019
In this paper, we introduce concepts of optimal and near optimal secret data hiding schemes. We present a new digital image steganography approach based on the Galois field $GF(p^m)$ using graph and automata to design the data hiding scheme of the general form ($k,N,{\lfloor}{\log}_2p^{mn}{\rfloor}$) for binary, gray and palette images with the given assumptions, where k, m, n, N are positive integers and p is prime, show the sufficient conditions for the existence and prove the existence of some optimal and near optimal secret data hiding schemes. These results are derived from the concept of the maximal secret data ratio of embedded bits, the module approach and the fastest optimal parity assignment method proposed by Huy et al. in 2011 and 2013. An application of the schemes to the process of hiding a finite sequence of secret data in an image is also considered. Security analyses and experimental results confirm that our approach can create steganographic schemes which achieve high efficiency in embedding capacity, visual quality, speed as well as security, which are key properties of steganography.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.