• Title/Summary/Keyword: Granulosa

Search Result 298, Processing Time 0.032 seconds

Effects of Steroid Hormone in Avian Follicles

  • Caicedo Rivas, R.E.;Nieto, M. Paz-Calderon;Kamiyoshi, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.487-499
    • /
    • 2016
  • The aim of the present study was to examine the effects of testosterone (T) and estradiol-$17{\beta}$ ($E_2$) on the production of progesterone ($P_4$) by granulosa cells, and of the $E_2$ on the production of $P_4$ and T by theca internal cells. In the first experiment, granulosa cells isolated from the largest ($F_1$) and third largest ($F_3$) preovulatory follicle were incubated for 4 h in short-term culture system, $P_4$ production by granulosa cells of both $F_1$ and $F_3$ was increased in a dose-dependent manner by ovine luteinizing hormone (oLH), but not T or $E_2$. In the second experiment, $F_1$ and $F_3$ granulosa cells cultured for 48 h in the developed monolayer culture system were recultured for an additional 48 h with increasing doses of various physiological active substances existing in the ovary, including T and $E_2$. Basal $P_4$ production for 48 h during 48 to 96 h of the cultured was about nine fold greater by $F_1$ granulosa cells than by $F_3$ granulosa cells. In substances examined oLH, chicken vasoactive intestinal polypeptide (cVIP) and T, but not $E_2$, stimulated in a dose-dependent manner $P_4$ production in both $F_1$ and $F_3$ granulosa cells. In addition, when the time course of $P_4$ production by $F_1$ granulosa cells in response to oLH, cVIP, T and $E_2$ was examined for 48 h during 48 to 96 h of culture, although $E_2$ had no effect on $P_4$ production by granulosa cells of $F_1$ during the period from 48 to 96 h of culture, $P_4$ production with oLH was found to be increased at 4 h of the culture, with a maximal 9.14 fold level at 6 h. By contrast, $P_4$ production with cVIP and T increased significantly (p<0.05) from 8 and 12 h of the culture, respectively, with maximal 6.50 fold response at 12 h and 6, 48 fold responses at 36 h. Furthermore, when $F_1$ granulosa cells were precultured with $E_2$ for various times before 4 h culture with oLH at 96 h of culture, the increase in $P_4$ production in response to oLH with a dose-related manner was only found at a pretreatment time of more than 12 h. In the third experiment, theca internal cells of $F_1$, $F_2$ and the largest third to fifth preovulatory follicles ($F_{3-5}$) were incubated for 4 h in short-term culture system with increasing doses of $E_2$. The production of $P_4$ and T by theca internal cells were increased with the addition of $E_2$ of $10^{-6}M$. These increases were greater in smaller follicles. These results indicate that, in granulosa cells of the hen, T may have a direct stimulatory action in the long term on $P_4$ production, and on $E_2$ in long-term action which may enhance the sensitivity to LH for $P_4$ production, and thus, in theca internal cells, $E_2$ in short term action may stimulate the production of $P_4$ and T.

Integrated transcriptomic analysis on small yellow follicles reveals that sosondowah ankyrin repeat domain family member A inhibits chicken follicle selection

  • Zhong, Conghao;Liu, Zemin;Qiao, Xibo;Kang, Li;Sun, Yi;Jiang, Yunliang
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1290-1302
    • /
    • 2021
  • Objective: Follicle selection is an important process in chicken egg laying. Among several small yellow (SY) follicles, the one exhibiting the highest expression of follicle stimulation hormone receptor (FSHR) will be selected to become a hierarchal follicle. The role of lncRNA, miRNA and other non-coding RNA in chicken follicle selection is unclear. Methods: In this study, the whole transcriptome sequencing of SY follicles with different expression levels of FSHR in Jining Bairi hens was performed, and the expression of 30 randomly selected mRNAs, lncRNAs and miRNAs was validated by quantitative real-time polymerase chain reaction. Preliminary studies and bioinformatics analysis were performed on the selected mRNA, lncRNA, miRNA and their target genes. The effect of identified gene was examined in the granulosa cells of chicken follicles. Results: Integrated transcriptomic analysis on chicken SY follicles differing in FSHR expression revealed 467 differentially expressed mRNA genes, 134 differentially expressed lncRNA genes and 34 differentially expressed miRNA genes, and sosondowah ankyrin repeat domain family member A (SOWAHA) was the common target gene of three miRNAs and one lncRNA. SOWAHA was mainly expressed in small white (SW) and SY follicles and was affected by follicle stimulation hormone (FSH) treatment in the granulosa cells. Knockdown of SOWAHA inhibited the expression of Wnt family member 4 (Wnt4) and steroidogenic acute regulatory protein (StAR) in the granulosa cells of prehierarchal follicles, while stimulated Wnt4 in hierarchal follicles. Overexpression of SOWAHA increased the expression of Wnt4 in the granulosa cells of prehierarchal follicles, decreased that of StAR and cytochrome P450 family 11 subfamily A member 1 in the granulosa cells of hierarchal follicles and inhibited the proliferation of granulosa cells. Conclusion: Integrated analysis of chicken SY follicle transcriptomes identified SOWAHA as a network gene that is affected by FSH in granulosa cells of ovarian follicles. SOWAHA affected the expression of genes involved in chicken follicle selection and inhibited the proliferation of granulosa cells, suggesting an inhibitory role in chicken follicle selection.

Ultrastructure of the Follicular Oocyte Surface in Rana dybowskii

  • Ju, Jung-Won;Im, Wook-Bin;Kwon, Hyuk Bang;Choi, Hueng-Sik
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • Rana ovarian follicles consist of oocyte, vitelline envelope, granulosa cells, and theca/epithelial layer. Using scanning electron microscopy, the surface structure of each follicular component was investigated. Changes in oocyte surface during oocyte maturation were also examined. Theca/epithelial layer was almost transparent and some blood vessels and granulosa cells were observed underneath in intact follicle. The number of granulosa cells was estimated to be 6700-7200 per oocyte. The granulosa cells partially overlapped each other and their microvilli penetrated the vitelline membrane via holes present in the vitelline envelope and seemed to be linked to oocyte microvilli. After removal of the vitelline envelope by microforcep, oocyte microvilli were observed on the surface of the devitellined oocyte. The oocyte microvilli formed partial clusters on the surface of white spot area which appears iust before germinal vesicle breakdown (GVBD), whereas they were evenly distributed in other areas. The microvilli became shorter and less dense with oocyte maturation. The lengths of oocyte microvilli in the immature and mature oocyte were 1.5 $\mu$m and 0.6 $\mu$m, respectively. The present study suggests a fundamental structural change occurring on the oocyte surface during maturation.

  • PDF

Production Efficiency of In Vitro Fertilized Embryos by Different Maturation Periods and Culture Systems in Korean Native Cattle (체외성숙시간 및 배양방법에 따른 한우 체외수정란의 생산효율)

  • 노규진;강태영;이효종;박충생;최상용
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 1996
  • This study was conducted to improve the production efficiency of in vitro produced (IVP) embryos in Korean Native cows. The optimal conditions and procedures for in vitro maturation(IVM), in vitro fertilization(IVF) and in vitro culture(IVC) of bovine follicular oocytes and IVP embryos were evaluated. Immature follicular oocytes were collected fiom the follicles of bovine ovaries obtained from abattoirs. The oocytes of Grade I and II for IVM were cocultured with monolayered bovine oviductal epithelial cells(BOEG) or granulosa cells in TCM-199 solution supplemented with follicle stimulating hormone, lutenizing hormone, estradiol-17$\beta$ and heat inactivated fetal calf serum at 39$^{\circ}C$ under 5% $CO_2$ in air for 14 to 24 hours. Most of the oocytes(93%) matured to metaphase II in 24 hours. The cocultured IVM oocytes were fertilized in vitro at significantly(P<0.05) higher rate with BOEC(83.8%) and with granulosa cells(84.6%) than the non-cocultured IVM oocytes(73.6%). The IVM-IVF embryos developed to morula and blastocyst at significantly(P<0.05) higher rate in coculture with BOEC(41.2%) than with granulosa cells(23.1%) or conditioned medium(23.4%).

  • PDF

Determination of the Granulosa Cell-Specific Endothelin Receptor A Deletion on Ovarian Function

  • Cho, Jong-Ki
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.195-200
    • /
    • 2014
  • Endothelin 2 (EDN2) induces follicular rupture by constricting periovulatory follicles. In this study, it was investigated the mechanisms of EDN2 action on follicular rupture with respect of receptor using the conditionally granulosa cell specific EDN2 receptor type A (ETa) KO mice (gcETaKO; $ETa^{flox/-}{\cdot}Amhr2^{Cre}$). It was generated the gcETaKO mice by breeding with $ETa^{flox/-}$ mice after mono-alleic ETa knockout by $ZP3^{Cre}$ and $Amhr2^{Cre}$ mice. Fertility, ovulation and maturation rates of ovulated oocytes after super ovulation were investigated in the gcETaKO mice compared with wild-type mice ($ETa^{flox/flox}$ and $ETa^{flox/-}$) as a control group. In the gcETaKO mice, normal fertility after breeding with male mice was shown compared with wild-type mice. And, there was no significant differences in ovulation rates after super ovulation, however its maturation rates was lower than that of wild type mice. These findings show that EDN2 in follicular rupture for ovulation is related with an other ETa not in granulosa cells. Further studies are needed to investigate how EDN2 is acted in ovarian follicular rupture for ovulation.

Effect of Arachidonic Acid on Production of Laminin and Connexin of Granulosa Cells from Chicken Pre-hierarchical Follicles

  • Jin, Yanmei;Tan, Tu Quang;Zhang, Caiqiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.350-355
    • /
    • 2009
  • Arachidonic acid (AA) is a polyunsaturated fatty acid that is a normal constituent of membrane lipids in animal cells. In addition to its role as a precursor of prostaglandins, AA itself may play an important role in the regulation of cell function. The effect of AA on functions of granulosa cells was investigated in pre-hierarchical small yellow follicles of laying hens. Immuno-cytochemical staining showed that AA ($10^{-7}-10^{-5}$ M) increased the expression of the extracellular matrix glycoprotein laminin, gap junction connexin 43 and protein kinase C (PKC). Therefore, mediated by the PKC signal pathway, AA may regulate the intercellular communication of granulosa cells and follicular development by increasing the expression of laminin and connexin.

A Study on the Fine Structural Changes of Porcine Ovarian Follicles during Atresia (돼지 난소내 여포의 폐쇄에 따른 미세구조의 변화에 관한 연구)

  • 김문규;이양한김종흡윤용달
    • The Korean Journal of Zoology
    • /
    • v.30 no.4
    • /
    • pp.351-370
    • /
    • 1987
  • This experiment has been done in order to study the correlation between the ultrastructure changes and the atresia phenomenon of the follicles in porcine ovary. The ovaries were assorted according to the presence or absence of corpus luteum. Thereafter, the follicles were classified into normal, pyknotic, necrotic and cystic groups by atretic characteristics on the histological observation, and then their ultrastructures were examined with an electron microscope. The results were as followings. 1. In normal group, granulosa cells represented the ultrastructural characteristics of protein-synthesizing cells. Since the initiation of atresia, the line structure of granulosa cells showed many of the characteristic features of steroid-secreting cells, followed by gradual pyknosis. 2. In necrotic group of the ovary without corpus luteum, the theca interns became hypertrophic and displayed the ultrastructural features of active steroidsecreting cells. But this phenomenon was not seen in the follicles of the ovary with corpus luteum. 3. Degenerative changes of cumulus cells were similar to those of granulosa cells, and the degenerating oocytes showed the degeneration of cellular organelles, cytoplasmic vacuolization and disappearance of microvilli on the surface. The degeneration of granulosa cells tended to procede that of oocytecumulus complex in the follicles of the ovary having no corpus luteum, but this tendency was reversed in the case of presence of corpus luteum. In conclusion, it may be unable to identi(y the initiation of follicular atresia

  • PDF

Characterization of a protein-based filtering cartridge for the removal of atrazine-induced effects on living cultured cells

  • Basini, Giuseppina;Grasselli, Francesca;Bussolati, Simona;Conti, Virna;Bianchi, Francesco;Grolli, Stefano;Bianchi, Federica;Ramoni, Roberto
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • Chronic exposure to atrazine (ATR) raises concerns about adverse effects on reproductive functions. We tested our previously validated filtering device, the OBP-based filter, onto a biological model constituted of cultured swine granulosa cells treated for 48 h with media conditioned with 0.1 or $10{\mu}M$ ATR evaluating cell viability and steroidogenesis. The tested atrazine concentrations did not change granulosa cell viability and no filtering effects was observed following treatments with media prepared with differently filtered water. As for steroidogenesis, treatment of water with OBP-based filter containing $10{\mu}M$ atrazine completely suppressed the stimulatory effect of $10{\mu}M$ atrazine on progesterone production as well as the inhibitory effect of $0.1{\mu}M$ ATR on estradiol-$17{\beta}$ production by granulosa cells. Our data demonstrate that the impairment of steroidogenesis induced by ATR is effectively removed after water filtration in the experimental device thus suggesting potential use in biotechnological applications on living cells and/or organisms.