• 제목/요약/키워드: Granulosa

Search Result 300, Processing Time 0.025 seconds

Effects of Daidzein on mRNA Expression of Bone Morphogenetic Protein Receptor Type I and II Genes in the Ovine Granulosa Cells

  • Chen, A Qin;Xu, Zi Rong;Yu, Song Dong;Yang, Zhi Gang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2010
  • Daidzein, a natural isoflavonoid phytoestrogen, structurally resembles estradiol (E2) and possesses estrogenic activity. This study was designed to test the hypothesis that daidzein may mimic the effects of E2 on ovine follicle development by regulation of the mRNA expression of bone morphogenetic protein receptor genes and thereby influence the reproductive system. Granulosa cells were cultured in serum-free McCoy's 5A medium with and without supplementation of daidzein. Results showed that daidzein (10-100 ng/ml) significantly increased the proliferation of ovine granulosa cells (p<0.05), but inhibited the growth of granulosa cells at a dose of 1,000 ng/ml (p<0.01). Daidzein inhibited progesterone production in a dose dependent manner; however, it did not affect estradiol production by granulosa cells. We also investigated the effects of daidzein on BMPRII, BMPRIB and ALK-5 mRNA expression in ovine granulosa cells by quantitative real-time PCR. Treatment of granulosa cells with daidzein increased significantly expression of these genes at 10-100 ng/ml. Thus, these data suggested that a low concentration of daidzein (10-100 ng/ml) had a direct stimulatory effect on ovine granulosa cells while a high concentration was toxic.

Studies on the Regulation of Ovarian Granulosa Cell Apoptosis by Gonadotropins and Nitric Oxide (생식소 자극 호르몬과 Nitric Oxide에 의한 난소 과립세포의 Apoptosis 조절에 대한 연구)

  • 이석자
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.157-164
    • /
    • 1997
  • To study the regulation of porcine follicular cell apostosis by gonadotropin, steroid, and nitric oxide, we analyzed DNA fragmentation, the hallmark of apoptosis, and nitrite production of porcine granulosa cells. Dissected indiidual follicles from ovary were separated in size (small, 2-3 mm; medium, 5-6 mm; large, 7-8 mm) and isolated granulosa cells were classified morpholocally as atretic or nonatretic. Nitrite concentration was measured by mixing follicular fluids with an equal volume of Griess reagent. Follicular nitric oxide (NO) concentration of healthy follicles was higher than that of atretic follicles. Apoptotic DNA fragmentation was suppressed in non-apoptotic granulosa cells. Follicular apoptosis was induced by androgen but prevented by gonadotropin in vitro. Apoptosis was confined to the granulosa cells. But it was not clear whether apoptosis of granulosa cells were isolated, incubated with or without gonadotropin, androgen and sodium nitroprusside (SNP), respectively at $37^{\circ}C$ for 24 hrs. Cultured granulosa cells were used to extract genomic DNA and culture media was asssayed for nitrite concentration. Nitrite production of culture media was increased, while apoptotic DNA fragmentation was suppressed in PMSG, hCG, testosterone+SNP and SNP treated groups. Nitrite concentration in culture media was decreased, but apoptotic DNA fragmentation was induced in testosterone treated group. These data suggest that NO production and apoptosis may be involved of granulosa cell apoptosis induced by testosterone.

  • PDF

Induction of Ski Protein Expression upon Luteinization in Rat Granulosa Cells

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nishihara, Masugi;Yang, Boh-Suk;Ko, Yeoung-Gyu;Kim, Sung-Woo
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.237-244
    • /
    • 2011
  • Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells, however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to examine whether the initiation of luteinization with luteinizing hormone (LH) directly regulates expression of Ski in the luteinized granulosa and luteal cells after ovulation by in vitro models. RT-PCR and real time PCR analysis respectively revealed that LH had no effect on c-Ski mRNA expression in the cultured granulosa cells regardless of LH treatment. Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-Ski) was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated post-transcriptionally. Moreover, expression of mRNA of Arkadia, an E3 ubiquitin ligases, in luteinizing granulosa cells in vivo was assessed by realtime-PCR. The levels of Arkadia mRNA expression were unchanged during follicular growth and postovulatory luteinization. These findings suggest that Ski protein level may be regulated during luteinization at translational and/or post-translational level but not by Arkadia.

Effects of Co-Culture with Granulosa Cells on In Vitro Fertilization and Cleavage of Bovine Extrafollicular Oocytes (과립막세포와의 Co-Culture가 소 난포란의 체외수정과 분할에 미치는 영향)

  • 신태영;조충호;황광남;황우석
    • Journal of Embryo Transfer
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 1991
  • The present study was performed to investigate the effects of co-culture with granulosa cells on in vitro fertilization and cleavage of early bovine embryo development. Bovine oocytes were matured for 20-24 hrs in vitro with granulosa cells or without and then fertilized in vitro using frozen-thawed spermatozoa treated with BO-caffeine, BO-BSA(2OmM heparin added). At l8hrs after insemination, oocytes were fixed and examined or further cultured in TCM 199 for 48hrs. The fertilization rates between the control(70.4%) and the groups of co-cultured with granulosa cell(2.5$\times$106 cells/ml; 71.6%, 5.0$\times$ 106/ml; 71.9%, l.0$\times$ 107/ml; 71.1%) did not differ significantly. The cleavage rates in the groups co-cultured with granulosa cell(2.5$\times$ 106 cells/mi; 43.6%, 5.0$\times$ 106/ml; 46.8%. l.0$\times$ 107/ml; 45.0%)were significantly higher than that of without granulosa cell, respectively(P<0.05). However there were no significant differences between the groups co-cultured with granulosa cells. The result indicated that co-culture with granulosa cell was effective means to cleavage of bovine follicular oocytes but did not affect the in vitro fertilization.

  • PDF

Meiotic Competence of Caprine Oocytes During IVM on Granulosa Cell Monolayers Developed from Small and Large Follicles in Comparison to the Granulosa Cell Coculture

  • Sharma, G. Taru;Teotia, Alok;Majumdar, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.777-784
    • /
    • 2001
  • Evaluation of the granulosa cell (GC) monolayers developed from small (<5 mm) and large (>5 mm) follicles on the meiotic competence of caprine oocytes during in vitro maturation was done in this study in comparison to the granulosa cell coculture. Ovaries were collected from the local abattoir and follicular contents were aspirated for the monolayer culture. For IVM the oocytes were collected by puncturing the nonatretic follicles (>4 mm). Results revealed that at the same seeding rate, small follicular granulosa cell monolayer achieved confluence 24-48 h earlier than large follicular granulosa cell monolayer. GC monolayers significantly p (<0.05) improved the rate of meiotic resumption and nuclear maturation (84.76% vs 74.74%) after 27 h of culture in comparison to GC coculture. Statistically there was no significant difference in the maturation rate between the caprine oocytes matured over small or large follicular GC monolayers. It is concluded from the present study that GC monolayers support better nuclear and cytoplasmic maturation of growing caprine oocytes which is evident by better maturation rate over GC monolayer as compared to the oocytes matured with GC coculture. Granulosa cells from small and large follicles can be used for IVM with more or less in the same efficiency after conditioning them with maturation media in 18-24 h before the onset of culture.

Flow Cytometric Analysis of Bovine Granulosa Cells : Changes of Cell Cycle During Follicular Maturation (Flow Cytometer를 이용한 소 과립막세포의 분석 : 난포성숙에 따른 세포주기의 변화)

  • 김해정;김동훈;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.279-285
    • /
    • 1994
  • The objective of the present study was to characterize the cell cycles of granulosa cell populations during follicular maturation in cattle by using flow cytometer. Granulosa cells were isolated from bovine preovulatory antral follicles of F1(>10mm), F2(5~20mm), F3(3~4mm) and F4(1~2mm) diameter and fixed and stained with fluorochromes that selectively bine to DNA. Flow cytometer equipped with a laser excitation system was used to analyze the intensity of fluorescence from stained cells. Forward angle light-scatter(FSC) and 90$^{\circ}$light-scatter(SSC) signals were adopted to measure the size and the granularity of granulosa cells. As a results of FSC/SSC analysis, granulosa cell populations(G1 phase of cell cycle) from each follicle were relatively regular in size and granularity, regardless of follicular size. However, their distribution in granularity was greater than that in size. Most of granulosa cell populations collected from each follicle were distributed in G0/G1, S and G2/M phases. As the follicles approached to ovulation the percentage of cells in the proliferative phases of cell cycle (S and G2/M) decreased significantly, but there was a concomitant increase in the percentage of granulosa cells in G1 phase. Therefore, these data indicate the proportion of main populations to cell cycle of granulosa cells may be changed from proliferative phase to G1 phase during follicular maturation in cattle.

  • PDF

Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

  • Kim, So-Youn
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development.

Formation of Chimeric Gap Junction Channels in Mammalian Ovarian Follicle

  • Oh Seunghoon
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.147-153
    • /
    • 2004
  • The oocyte and its surrounding granulosa cells co-exist in a closed compartment called a follicle, although they receive many signals from other parts of the body. It is well established that the intercellular communications between the oocyte and granulosa cells are required for normal oocyte development and ovulation during folliculogenesis. Gap junctions are intercellular channels allowing the direct transmission of ions and small molecules between coupled cells. Several lines of studies have shown that multiple connexins (Cx, subunits of gap junction) are expressed in mammalian ovarian follicles. Among them, two major connexins Cx37 and Cx43 are expressed in different manner. While the gap junction channels formed by Cx37 are localized between the oocyte and encompassing granulosa cells, the intercellular channels by Cx43 are located between granulosa cells. In this review, I will summarize the general properties of gap junction channels and discuss their possible formation (or compatibility) of intercellular channels formed by the oocyte and granulosa cells.

Involvement of Ski Protein Expression in Luteinization in Rat Granulosa Cells

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nighihara, Masugi;Kim, Sung-Woo;Ko, Yeoung-Gyu;Yang, Boh-Suk
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.355-361
    • /
    • 2011
  • Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells, however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to locate Ski protein in the rat ovary during luteinization to predict the possible role of Ski. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadotropin to immature female rat, and luteinization was induced by human chorionic gonadotropin treatment to mimic luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of corpus luteum (CL). Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-ski) was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated post-transcriptionally.

Effect of Addition of Granulosa Cells for Oocyte Maturation on Cleavage and Development of Bovine IVF Embryos (체외성숙시 중.대란포의 과립막세포 첨가가 배 발달에 미치는 영향)

  • 공일근;주영국;곽대오;노규진;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • This experiment was investigated the effect of presence of granulosa cells from follicles of different size on bovine oocyte maturation, cleavage and development to late stage. The nuclear and cytoplasmic maturation of oocytes in the IVM-IVF system are critical for subsequent embryo development. Granulosa cells when the co-cultured with oocytes may interact with cumulus-oocytes complexes and influence the development competence of the oocytes. Granulosa cells from medium (2~6 mm) and large(>1O mm) size follicles were recovered by aspiration, washed 3 times by centrifugation at 500 x g for 5 min. and used for co-culture at a concentration of 2~3 x 106 cells/mi. The oocytes were matured in vitro (IVM) for 24 hrs. in TCM-199 supplemented with 35 $\mu$g/ml FSH, 10 $\mu$g/ml LH, 1 $\mu$g/ml estradiol-17$\beta$ and granulosa cells at 39$^{\circ}C$ under 5% $CO_2$ in air. They were fertilized in vitro (IVF) by epididymal spermatozoa treated with heparin for 24 hrs., and then the zygotes were co-cultured in vitro (I VC) with bovine oviductal epithelial cells for 7 to 9 days. The assessment of maturation revealed that Grade J oocytes showed significantly(P

  • PDF