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Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed ef-
forts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determin-
ing the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means 
to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous 
mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the 
mechanisms of granulosa cell tumor development.
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Introduction

Granulosa cell tumors (GCTs) are sex cord-stromal tumors that com-
prise 5% of all ovarian tumors in women [1,2]. Although GCTs arise 
mainly from granulosa cells, they can develop in both the ovaries in 
women and the testes in men [3,4]. GCTs are usually detectable at an 
early stage; however, 43% of patients experience recurrence, and 80% 
of those patients die from the disease [5,6]. Due to the indolent nature 
of these tumors, along with their propensity for relapse and malignan-

cy, patients with GCTs need long-term follow-up to monitor whether 
recurrence or metastasis has occurred [7,8]. Inhibins have been used 
as reliable markers to diagnose GCT recurrence and progression [9-11]. 

GCTs are classified into juvenile granulosa cell tumors (JGCTs) and 
adult granulosa cell tumors (AGCTs) based on histology, nuclear mor-
phology, the age of occurrence, and the potential for disease recur-
rence. AGCTs are the most common type of GCT, and occur in peri- 
and postmenopausal women [12]. JGCTs occur in girls from infancy 
through puberty and have the potential for malignancy [7]. AGCTs 
often show prominent nuclear and histological features, such as nu-
clear grooves (coffee-bean nuclei) and Call-Exner bodies (small fluid-
filled spaces surrounded by granulosa cells). By contrast, granulosa 
cells in JGCTs are neoplastic, round, non-grooved, luteinized, and 
have hyperchromatic nuclei [13]. Moreover, histological analysis 
shows the presence of follicle-like spaces in JGCTs. 

Advances in the identification of molecular mechanisms implicated 
in AGCTs have identified the C402G missense mutation of the FOXL2 
gene as present in 95% of AGCT patients [14,15]. This mutation has 
not been found in JGCTs, and, furthermore, the loss of FOXL2 expres-
sion has been observed in aggressive JGCTs [16]. The absence of 
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FOXL2 can alter the fate of granulosa cells, pushing them into uncon-
trolled growth, because FOXL2 expression is important for establish-
ing and maintaining granulosa cell identity. The FOXL2C134W mutation 
may induce AGCT formation by regulating targets in apoptotic [17] 
and steroidogenic [18] pathways. However, no clear pathophysiolog-
ical mechanisms have been described. While FOXL2 mutations in 
other loci induce mislocalization, protein aggregation, and impaired 
transactivation [19], the C402G missense mutation of the FOXL2 
gene does not lead to alterations in FOLX2 protein subcellular local-
ization, protein aggregation, mobility, or transactivational activity on 
its target promoter in vitro compared to wild-type protein FOLX2 [20]. 
Recently, it was proposed that GSK3β regulation on serine 33 (S33) of 
mutant FOXL2 is the cause of oncogenicity in AGCT [21]. Two activat-
ing mutations (R201C and R201H) of the stimulatory α subunit of a 
trimetric G protein (Gαs) were discovered in JGCT patients [22], and 
in-frame duplications within the pleckstrin homology domain of 
AKT1 were discovered in > 60% of JGCT patients [23]. 

Two cell lines derived from human GCTs have been investigated to 
understand the etiology and molecular mechanisms of AGCTs and 
JGCTs [24,25]. Despite the important information that has been ob-
tained using these cell lines, some discordances have been observed 
with data obtained from studies of human tumors [26], suggesting 
that the use of mouse models for studying GCTs may be necessary to 
more fully understand their origins. Here, we summarize the pheno-
types of the currently available GCT mouse models and what they 
have revealed about the molecular mechanisms underlying GCT de-
velopment.

1. SWR mice
SWR/Bm (SWR) mice were reported in 1985 as a model for studying 

pathways leading to the formation of spontaneous JGCTs [27]. Ap-
proximately 1% of inbred female SWR mice develop malignant JGCTs 
at approximately 8 weeks of age, starting at the time of the first ovar-
ian follicle maturation at approximately 3 to 5 weeks of age [28]. Pos-
sible tumor susceptibility modifiers include the Gct loci, such as Gct1 
on chromosome 4 and Gct4 and Gct6 on the X chromosome. Gct1 is 
essential for GCT development and is responsive to the androgenic 
precursor dehydroepiandrosterone, which has been shown to in-
crease tumor frequency [29]. Although other foci such as Gct2, Gct3, 
Gct4, Gct5, Gct6, Gct7, Gct8, and Gct9 are also linked with Gct1 and 
may be associated with the formation of GCTs, the Gct1SW allele is an 
essential driver for the ovarian tumor phenotype [30]. Four genes 
within the Gct1 interval (Vps13d, Tnfrsf8, Tnfrsf1b, and Dhrs3) may be 
involved in tumor formation in SWR mice. The tumors in this model 
are endocrinologically active, secreting high levels of inhibin and es-
trogen [29]. The initial formation of spontaneous GCTs is dependent 
on endocrine hormones, such as androgenic steroids at puberty, im-

plying that the time frame of the first wave of maturing follicles is 
critical in the development of JGCTs. GCTs from SWR mice have neo-
plastic potential, as demonstrated by the incidence of metastases 
through consecutive transplantation. SWR mice have significantly 
decreased serum levels of follicle-stimulating hormone (FSH) and lu-
teinizing hormone (LH), as seen in human GCT patients, while 
inhibin-α is robustly increased [31]. The serum levels of progesterone, 
dihydrotestosterone, and testosterone are also reduced in SWR mice, 
while tumor-bearing mice have a high capacity for aromatization. 
Therefore, this mouse model has similar histological and endocrine 
characteristics to human JGCT patients. 

2. Inhibin-α null mice
The inhibins belong to members of the transforming growth 

factor-β (TGF-β) family and inhibit the synthesis and secretion of pi-
tuitary FSH [32,33]. These peptide hormones are expressed in the ad-
renal gland, pituitary, brain, spleen, kidney, central nervous system, 
placenta, and the gonads [32]. Targeted deletion of the Inha gene 
causes the development of gonadal stromal tumors as early as 4 
weeks of age in both males and females, with nearly 100% pene-
trance [34]. Female mice develop multifocal, hemorrhagic, bilateral 
tumors with tubular or cord-like structures. Comparison of the serum 
FSH levels in these Inha-null mice shows a two- to threefold increase 
compared to heterozygous or wild-type controls, a characteristic that 
is secondary to the lack of suppression by inhibin. This suggests that 
downstream molecules in the inhibin signaling pathway are impor-
tant for GCT formation, and imbalances in gonadotropins might also 
play a role [35]. As shown in follitropin receptor knockout (FORKO) 
mice [36], perturbations in the gonadotropin signaling pathway and 
milieu of the ovary induce the development of GCTs. FORKO mice 
have a high serum level of activin secreted from the ovarian tumor, 
resulting in a cachexia-like wasting syndrome that is lethal to the 
mice at the onset of ovarian tumor development [34,37].

 High levels of activin caused by elimination of the Inha gene in-
duce activation of the SMAD2/3 signaling pathway in granulosa cells, 
stimulating proliferation [34]. The importance of SMAD3 for tumor 
progression is supported by studies of Madh3-/- (SMAD3-null) and 
Inha double knockout mice, which show slower progression of GCTs; 
SMAD2 is not necessary for inducing tumor formation in inhibin-de-
ficient mice [38-40]. Although inhibin-α null mice develop GCTs, their 
relevance for human GCTs is not completely understood because the 
majority of human GCT patients have high serum levels of inhibins 
[41,42]. Nonetheless, this mouse model has been useful for under-
standing the downstream molecular pathways of GCT formation.

3. Mice with the simian virus 40 T-antigen fusion gene 
Simian virus 40 T-antigen is a proto-oncogene that can transform 
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cells. Transgenic mice with overexpression of the simian virus 40 T-
antigen driven by the murine inhibin-α subunit promoter (Inha/Tag) 
were originally developed as a source of granulosa tumor cell lines to 
investigate the characteristics of GCTs. The ovarian tumors from these 
mice are prominent at 5 to 6 months of age and have 100% pene-
trance [43]. Tumor cells from these mice are atypical, mitotic, and 
have the appearance of granulosa cells, though the tumor cells can-
not be classified as AGCT or JGCT. Additionally, a transgenic mouse 
line with overexpression of simian virus 40 T-antigen driven by the 
anti-Müllerian hormone (AMH) promoter also develops ovarian tumors 
[44]. The ovarian tumors are bilateral, with 10% of mice developing 
tumors at 3 to 8 months of age. These mouse ovarian tumors contain 
serous cystic spaces, large hemorrhages, and necrosis, showing fur-
ther metastases in the lungs or liver in later stages. Cell lines derived 
from these mice maintain granulosa cell characteristics, such as the 
expression of LH, production of estradiol, responsiveness to human 
chorionic gonadotropin (hCG), and the presence of granulosa cell 
markers, as well as AMH type II receptors [44].

4. Mice with overexpression of the LHβ subunit (bLHβ-COOH-
terminal peptide)

These mice were generated using bovine LH β-subunit/hCG β-subunit 
COOH-terminal peptide (bLHβ-CTP) [45]. Tumorigenesis in these 
mice occurs at 4 to 8 months of age. These transgenic mice show un-
usually high levels of LH, as well as precocious puberty, a prolonged 
luteal phase, formation of cysts and, thus, GCTs, causing infertility in 
transgenic female mice dependent on their genetic predisposition 
[46]. High levels of estradiol, testosterone, and progesterone are 
present, and LH is especially high, suggesting that elevated LH might 
contribute to the formation of GCTs. According to a report describing 
the crystal structure of hCG [47], LH has growth factor-like properties. 
Excessive levels of LH in transgenic mice result in angiogenesis and 
growth aberrations, indicating that abnormal gonadotropin stimula-
tion is tumorigenic. However, these mice have many unique non-go-
nadal phenotypes due to chronically elevated steroid levels. The im-
portance of excessive LH in inducing tumor formation is also sup-
ported by mice deficient in both inhibins and LH [48]. These mice 
show a delay in tumor progression and increased survival. Moreover, 
bLHβ-CTP and Inha/Tag double transgenic mice show much faster 
gonadal tumorigenesis with elevated serum levels of LH [49]. Alto-
gether, these mice models indicate that excessive LH levels can in-
duce tumor formation.

5. Mice with mutant Wnt/β-catenin 
Ovarian granulosa cells express components of the Wnt/β-catenin 

pathway, suggesting that Wnt/β-catenin (CTNNB1) plays a role in 
granulosa cells. More specifically, both human and equine GCTs 

show nuclear localization of β-catenin. The PI3K/AKT signaling path-
way can also activate the WNT/CTNNB1 pathway through inactivation 
of GSK3β [50]. Both Wnt4flox/-;Amhr2tm3(cre)Bhr/+ and Wnt5aflox/-;Amh2cre/+ 
mice are subfertile and have small ovaries, follicle atresia, and a de-
creased ovulation rate, indicating that the WNT signaling pathway is 
important in ovarian follicle growth/survival and steroidogenesis [51-
55]. Catnbflox(ex3)/+;Amhr2Cre/+ mice, which express stable nuclear 
β-catenin driven by the Amhr2 promoter, develop GCTs, suggesting 
the importance of the misregulated Wnt/β-catenin pathway in GCT 
development [56]. Follicle-like structures develop at 6 weeks of age, 
and in 57% of mice, the formation of GCTs occurs at 7 months. A mi-
croarray analysis of pretumoral aged mice showed high expression 
levels of Wnt/β-catenin antagonists and neuronal markers. These 
were localized in pretumoral lesions, implying that the misregulated 
Wnt/β-catenin signaling pathway changes the fate of granulosa cells 
[57]. Mice with Pten loss of Catnbflox(ex3)/+;Amhr2Cre/+ (Ptenflox/flox;Ctnnb1flo

x(ex3)/+;Amh2Cre/+) demonstrate quickly growing GCTs with the ability to 
spread into the abdominal cavity, suggesting that PI3K/AKT and 
WNT/CTNNB1 signaling have synergistic effects in the development 
of GCTs [58]. Moreover, KrasG12D;Ctnnb1flox(ex3)/+;CYP19Cre/+ mice die 
earlier due to GCTs than Ctnnb1flox(ex3)/+;CYP19Cre/+ mice, indicating that 
the KRAS pathway is involved in GCT formation [4]. Therefore, mis-
regulated WNT signaling in granulosa cells can affect cell develop-
ment and the formation of GCTs.

6. Double conditional knockout mice of SMAD1 and SMAD5 in 
granulosa cells

Female mice deficient in both Smad1 and Smad5 in granulosa cells 
using Amhr2-cre are subfertile and develop GCTs with 100% pene-
trance [59]. This mouse model shows a phenotype at 2 to 3 months 
that is similar to that of humans with JGCTs [60]. Furthermore, 80% of 
these mice develop peritoneal and lymphatic metastases by 8 months 
of age [59]. This mouse model suggests that a signaling pathway in-
volving the activation of SMAD2/3 or the disruption of SMAD1/5 is 
conducive to JGCT pathogenesis. SMAD1/5 double-knockout mice 
had lower serum levels of FSH and altered LH and estradiol levels than 
control animals. Moreover, serum levels of inhibin-α and AMH are 
highly elevated in this mouse model. WNT/β-catenin in SMAD1/5 
double-knockout mice is not significantly different from that ob-
served in wild-type mice, suggesting that WNT/β-catenin may not 
contribute to JGCTs in the SMAD1/5 mouse model. Recent reports 
have demonstrated that TGFβ-SMAD signaling contributes to JGCT 
development through a study of Smad1/5/4 triple-knockout mice, 
which were found to exhibit delayed tumor formation and no evi-
dence of metastasis, in contrast to Smad1/5 double-knockout mice 
[61]. These findings suggest that the TGFβ signaling pathway contrib-
utes to tumor formation in JGCTs through the repression of apoptosis. 
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7. Mice with double-mutant BMPR1A and BMPR1B in 
granulosa cells

The BMP signaling pathway is important for granulosa cell devel-
opment. Among the type I receptors of the BMP signaling pathway, 
BMP receptors 1A and 1B are expressed in granulosa cells [62], and 
the knockout of both genes results in GCTs [63]. Tumors from 
Bmpr1a/1b double-knockout mice show upregulated TGFβ and TGFβ 
target genes. The ovaries of Bmpr1a/1b double-knockout mice de-
velop bilateral ovarian tumors from 8 ( ≤ 40%), 16 ( ≤ 90%) months of 
age. The gene expression profiles of ovarian tumors of Bmpr1a/1b 
double-knockout mice are similar to those of Smad1/5 double-
knockout mice tumors, although some differences between the two 
exist. This implies that the BMP signaling pathway through the BMP 
ligands, BMPR1A/1B to SMAD1/5, is important for the regulation of 
tumor suppressor pathways in mouse granulosa cells.

8. Estrogen receptor-β knockout mice 
Pituitary and ovarian tumors are observed in estrogen receptor 

(ER)-β knockout mice female mice at 2 years of age. GCTs in ERβ-/- 
mice secrete estrogen and have high expression of ERα [64]. Pituitary 
tumors induce the high expression of gonadotropin-releasing hor-
mone, which consequently causes the proliferation of granulosa 
cells, as well as endometrial hyperplasia, resulting in ovarian tumors 
[64]. Regarding the role of ERα in ovarian tumor formation, Couse 
and Korach [65] showed that 40% of ERα/β double-knockout female 
mice developed sex cord-stromal ovarian tumors between 15 and 20 
months of age. However, Fan et al. [64] showed that ERα/β double-
knockout female mice did not develop ovarian tumors, emphasizing 
the necessity of ERα in the development of GCTs. Consistent with this 
observation, female ERα-/- and Inha-/- double-knockout mice show 
an enhanced onset of GCT formation, shorter survival, and induced 
hypergonadotropism caused by disruption of the negative feedback 
mechanism in the absence of ERα [66]. Burns et al. [66] also showed 
that ERα was the genetic modifier involved in the development of 
ovarian tumors using ERα/Inha double-knockout mice and ERα/β/
Inha triple-knockout mice. However, the survival curves for ERβ/In-
hadouble-knockout mice overlapped with those of Inha mice, indi-
cating that ERβ alone is not enough to induce tumor formation. High 
expression of the LH receptor and SMAD3 are seen in both ERβ/Inha 
double-knockout and inhibin-α knockout mice. Therefore, ER signal-
ing pathways may have protective effects on tumor formation in fe-
males, with acceleration of tumor formation upon mutations in the 
ERα locus and the loss of both ERα and ERβ.

9. Mice with depletion of Foxo1/3 and Pten
The selective inactivation of the Foxo1 and Foxo3 genes in mouse 

ovarian granulosa cells leads to the development of GCTs in ≤ 20% 

of Foxo1/3 double knockout mice by 6 to 8 months of age. Although 
Pten conditional knockout mice with loss of the Pten gene in granu-
losa cells (Ptenf/f;Cyp19-Cre) show persistent nonsteroidogenic luteal 
cells [67], some mice (1%–7%) develop GCTs in Ptenf/f;Amhr2-Cre [58]. 
Additional inactivation of the Pten gene in the Foxo1/3 strain en-
hances the onset of GCT formation to 65% in the Foxo1/3/Pten triple-
knockout mice at approximately 2 to 3 months of age [68], suggest-
ing that the loss of Pten in the Foxo1/3 double knockout mice strain 
has a synergistic effect, inducing the formation and growth of GCTs. 
The loss of Foxo1/3/Pten contributes to the formation of GCTs be-
cause FOXO1/3 in granulosa cells regulates follicular development 
and apoptosis. This mouse model shows high expression of the Foxl2, 
Gata4, and Wnt4 genes, similar to what is observed in human GCT 
patients. Furthermore, the serum hormone profiles, which indicate 
elevated estradiol levels, high levels of activin (specially, βB) and in-
hibin, and low serum LH and FSH levels, suggest that the Foxo1/3 
double-knockout mice can serve as a model for adult human GCTs. 
The tumor granulosa cells exhibit high expression of p-SMAD2/3 in 
the nuclei of granulosa cells, indicating that activin/TGFβ signaling is 
active in the formation of GCTs. 

10. Oocyte-driven PIK3CA* mice
This mouse model was generated by crossing mice expressing oo-

cyte-specific Cre-recombinase (GDF9-iCre) [69] with mice expressing 
constitutively active mutant PI3K (PIK3CA*) [70]. In these mice, the 
elevation of phosphatidylinositol (3,4,5)-trisphosphate levels within 
oocytes promotes the survival of follicles and anovulation due to en-
docrine abnormalities. This mouse model develops GCTs when the 
mice are mature, at 2 months of age [71]. The hormonal profiles 
show high levels of activin, inhibin, AMH, testosterone, and proges-
terone, and low levels of FSH and LH. The molecular signatures of this 
mouse model include high levels of SMAD3, FOXL2, and GATA4. This 
mouse might provide a good model for identifying the molecular 
mechanisms of GCT initiation and formation due to the absence of 
the mutation in the granulosa cells [70,71].

Conclusion

Despite significant progress in understanding GCT biology, ques-
tions remain regarding the molecular mechanisms of JGCT and AGCT 
development. Although some mutations that induce the formation 
of AGCTs and JGCTs have been discovered, the events that initiate tu-
mors and drive recurrence are still unclear. Therefore, suitable models 
are very important in understanding the molecular pathways under-
lying GCT formation. In particular, it is important to revisit these 
mouse models (Table 1) and reassess their characteristics compared 
to human GCTs based on histopathology, molecular pathways, and 
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recurrence. Novel mouse models will be useful in answering chal-
lenging and persistent questions about GCT etiology. In conclusion, 
mouse models are powerful tools that aid in understanding the etiol-
ogy and biological mechanisms driving the initiation and progres-
sion of GCTs, as well as help in the development of new detection 
methods and treatments.
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