• Title/Summary/Keyword: Granular film

Search Result 71, Processing Time 0.029 seconds

Characterization of tantalum silicide films formed by composite sputtering and rapid thermal annealing

  • Cho, Hyun-Choon;Paek, Su-Hyon;Choi, Jin-Seok;Mah, Jae-Pyung;Ko, Chul-Gi;Kim, Dong-Won
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 1992
  • Tantalum silicide films are prepared from a composite $TaSi_{28}$ target source and subjected to rapid thermal annealing($500-1100^{\circ}C$, 20sec) in Ar ambient. The formation and the properties of tantalum silicides have been investigated by using 4-point probe, x-ray diffraction, scanning electron microscope(SEM), Auger electron spectroscope(AES), and ${\alpha}$-step. It has been found that the sample annealed above $700^{\circ}C$ forms a polycrystalline $TaSi_2$ phase, and grains grow in granular form regardless of the kind of substrates. The mechanism of the formation of tantalum silicide is the nucleation and growth by Ta-Si short range reaction. The tantalum silicide film has the relatively low resistivity($70-72.5{\mu}{\Omega}-cm$) and smooth surface roughness.

  • PDF

Degradation of a Pesticide, 4-Chloro-2-methylphenoxyacetic Acid by Immobilized Biofilm in Bench-scale Column Reactors (컬럼반응조내에서의 고정된 생물막에 의한 농약 4-chloro-2-methylphenoxyacetic acid의 분해)

  • 오계헌;차민석
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.524-528
    • /
    • 1996
  • Bacterial degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) was studied in column reactors under conditions approximating a fluidized bed system, with granular activated carbon (GAC) as a support matrix. A mixed bacterial culture of MCPA-degrading bacteria was used as an inoculum to develop a biofilm on GAC. Initially, adsorption of MCPA by GAC and blofilm formation on GAC were examined. MCPA degradation was evaluated with a batch and continuous mode of operation of the GAC fixed-film column reactors. In the batch operations, complete degradation of MCPA was achieved during the incubation period. Partial degradation of MCPA occurred in the continuous operations and MCPA degradation was dependent on the feeding rate of MCPA solution.

  • PDF

Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors (간단한 화학적 합성을 통한 고성능 슈퍼캐패시터용 수산화 구리 전극)

  • Patil, U.M.;Nam, Min Sik;Shinde, N.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.175-180
    • /
    • 2015
  • A facile soft chemical synthesis route is used to grow nano-buds of copper hydroxide [$Cu(OH)_2$] thin films on stainless steel substrate[SS]. Besides different chemical methods for synthesis of $Cu(OH)_2$ nanostructure, the chemical bath deposition (CBD) is attractive for its simplicity and environment friendly condition. The structural, morphological, and electro-chemical properties of $Cu(OH)_2$ thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurement techniques. The results showed that, facile chemical synthesis route allows to form the polycrystalline, granular nano-buds of $Cu(OH)_2$ thin films. The electrochemical properties of $Cu(OH)_2$ thin films are studied in an aqueous 1 M KOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with $340Fg^{-1}$ specific capacitance. Moreover, electrochemical capacitive measurements of $Cu(OH)_2/SS$ electrode exhibit a high specific energy and power density about ${\sim}83Wh\;kg^{-1}$ and ${\sim}3.1kW\;kg^{-1}$, respectively, at $1mA\;cm^{-2}$ current density. The superior electrochemical properties of copper hydroxide ($Cu(OH)_2/SS$) electrode with nano-buds like structure mutually improves pseudocapacitive performance. This work evokes scalable chemical synthesis with the enhanced supercapacitive performance of $Cu(OH)_2/SS$ electrode in energy storage devices.

Effect of composition on the structural and thermal properties of TiZrN thin film (TiZrN 박막의 조성이 구조적 특성 및 열적 특성에 미치는 영향)

  • Choi, Byoung Su;Um, Ji Hun;Seok, Min Jun;Lee, Byeong Woo;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • The effect of chemical composition on the structural and thermal properties of TiZrN thin films was studied. As the Zr fraction in the deposited TixZr1-xN (x = 0.87, 0.82, 0.7, 0.6, and 0.28) increased, microstructural changes consisted of reduction in the grain size and a gradual transition from columnar structure to granular structure were observed. In addition, it was also confirmed that a gradual crystal phase transition from TiN to TiZrN has occurred as the Zr fraction increased up to 0.4. After heat treatment at 900℃, Ti0.82Zr0.18N and Ti0.7Zr0.3N layers were converted to a form in which rutile phase TiO2 and TiZrO4 oxides coexist, while Ti0.6Zr0.4N layer was converted to TiZrO4 oxide. Among the five compositions of TiZrN films, the Ti0.6Zr0.4N showed the best high temperature stability and produced a significant enhancement in the thermal oxidation resistance of Inconel 617 through suppressing the surface diffusion of Cr caused by thermal oxidation of the Inconel 617 substrate.

Granulation Characteristics of Mono-granular NPK(10-0-30) Fertilizer Incorporated with Rock-Phosphate Powder and its Effects on Tobacco Plant (인광석분말을 증량제로 사용한 연초(煙草)재배용 복합비료(10-0-30)의 조립(造粒)특성 및 비효)

  • Lee, Yun-Hwan;Jeong, Hun-Chae;Kim, Yong-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.290-295
    • /
    • 2002
  • Fertilizer granulation test was carried out by a small pan granulator. A premixture composed of SOP 60%, urea 22% and RP powder 18% was rolled in the pan granulator while 10% phosphoric acid solution(binder) was sprayed on the rolling powder bed. Granules were developed very fast along with a little amount of binder. Hardness, brittle ratio in water and hygroscopicity of granules were improved enough to evaluate physical properties of the fertilizer. Growth responses of tobacco plant to the fertilizer were investigated at seedling and flowering stage by pot experiment under plastic film roof. Seedlings showed poor growth at nursery pot cell. In virgin soil with deficient available phosphate tobacco plant showed poor growth until budding and flowering stage but good growth in tillage soil with high cumulative phosphate.

Deposition of $MgB_2$ Thin Films on Alumina-Buffered Si Substrates by using Hybrid Physical-Chemical Vapor Deposition Method (혼성물리화학기상 증착법에 의한 알루미나 완충층을 가진 실리콘 기판 위의 $MgB_2$ 박막제조에 대한 연구)

  • Lee, T.G.;Park, S.W.;Seong, W.K.;Huh, J.Y.;Jung, S.G.;Lee, B.K.;An, K.S.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • [ $MgB_2$ ] thin films were fabricated using hybrid physical-chemical vapor deposition (HPCVD) method on silicon substrates with buffers of alumina grown by using atomic layer deposition method. The growth war in a range of temperatures $500\;{\sim}\;600^{\circ}C$ and under the reactor pressures of $25\;{\sim}\;50\;Torr$. There are some interfacial reactions in the as-grown films with impurities of mostly $Mg_2Si$, $MgAl_2O_4$, and other phases. The $T_c$'s of $MgB_2$ films were observed to be as high as 39 K, but the transition widths were increased with growth temperatures. The magnetization was measured as a function of temperature down to the temperature of 5 K, but the complete Meissner effect was not observed, which shows that the granular nature of weak links is prevailing. The formation of mostly $Mg_2Si$ impurity in HPCVD process is discussed, considering the diffusion and reaction of Mg vapor with silicon substrates.

  • PDF

Tensile properties and Spot Weldability of Trip High Strength Steel Sheet (Trip형 고장력강판의 인장성질 및 점용접성)

  • Kang, C.Y.;Kim, H.J.;Kim, C.G.;Lee, B.W.;Lee, M.Y.;Lee, G.H.;Kim, T.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.295-304
    • /
    • 1998
  • The effects of retained austenite and carbon content in the retained austenite on the tensile strength-elongation balance and spot weldability of TRIP high strength steel sheet have been investigated. The retained austenite of granular type increased with increasing intercritical annealing and austempering temperature, and film type was increased with the increase of austempering time. The volume fraction of retained austenite increased with decreasing intereritical annealing temperature, and the maximum value was obtained at austempering temperature of $400^{\circ}C$. The values of tensile strength-elongation balance increased with decreasing intercritical annealing temperature and maximum value was obtained at austempering temperature of $400^{\circ}C$. The maximum value of tensile strength-elongation balance was obtained at a retained austenite content of about 12%. Tensile shear strength of the specimens with retained austenite was higher than that of the normalizing specimens. With increasing welding current and time, the tensile shear strengh and nugget diameter increased, while nugget thickness showed the peak value and then decreased. The optimum range of welding condition at the given welding pressure of 350kgf was 7~11kA and 10~15 cycles.

  • PDF

Structural,Magnetic, and Magnetoresistance Behavior of Magnetron Sputtered NiFe/Ag Multilayers under an Ar and $Ar/H_2$ Atmosphere (Ar 및 $Ar/H_2$ 분위기에서 스퍼터 증착한 NiFe/Ag 다층박막의 구조, 자기 및 자기저항 거동에 관한 연구)

  • 서유석;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.159-165
    • /
    • 1999
  • Structural, magnetic and magnetoresistance behavior of NiFe/Ag multilayers prepared by a magnetron sputter under an Ar and $Ar/H_2$ atmosphere was studied. It was difficult to make a uniform multilayer by using an Ar atmosphere. However, the uniform multilayers could be fabricated by using an $Ar/H_2$ atmosphere. This was thought to be due to decrease in the energy of the sputtered atom and Ar content of the film. Typical magnetoresistance behavior of the discontinuous NiFe/Ag multilayers appeared when the uniform multilayer was formed and annealed. Substrate temperature did not improve the uniformity of the multilayers. Above 20$0^{\circ}C$ of the substrate temperature, the films were almost formed into granular alloys rather than multilayers.

  • PDF

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D.;Dai, S.;Goullet, A.;Granier, A.
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850124.1-1850124.12
    • /
    • 2018
  • $TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.

No-Tillage Agriculture of Korean-Style on Recycled Ridge II. Changes in Physical Properties : Water-Stable Aggregate, Bulk density, and Three Phase Ratio to Retain Water at Plastic Film Greenhouse Soil in No-Tillage System (두둑을 재활용한 한국형 무경운 농업 II. 시설 무경운 토양의 물리적 특성 : 입단과 용적밀도 및 삼상변화)

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Sun-Kook;Kim, Hee-Kwon;Kim, Hyun-Woo;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.719-733
    • /
    • 2016
  • This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the productivity of crop and physical properties of soil under green house condition. This study is a part of "No-tillage agriculture of Korea-type on recycled ridge". From results for distribution of soil particle size with time process after tillage, soil particles were composed with granular structure in both tillage and no-tillage. No-tillage soil in distribution of above 2 mm soil particle increased at top soil and subsoil compared with tillage soil. Tillage and one year of no-tillage soil were not a significant difference at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate. Two years of no-tillage soil was significantly increased by 8.2%, 4.5%, and 1.7% at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate, respectively, compared with one year of no-tillage. Bulk density of top soil was $1.10MG\;m^3$ at tillage and $1.30MG\;m^3$ at one year of no-tillage. Bulk density of top soil was $1.14MG\;m^3$ at two years and $1.03MG\;m^3$ at three years of no-tillage, respectively. Bulk density of subsoil was a similar tendency. Solid phase ratio in top soil and subsoil was increased at one year of no-tillage compared with tillage soil, while soil phase ratio decreased at two and three years of no-tillage. Pore space ratio in tillage top soil (58.5%) was decreased by 8.5% at compared with no-tillage soil (51.0%). Pore space ratio was 56.9% and 61.2% at two and three years of no-tillage soil, respectively. Subsoil was a similar tendency. Gaseous phase ratio was decreased at one year of no-tillage soil, and increased at two and three years of no-tillage soil compared with tillage soil. Liquid phase ratio in top soil was increased at one year of no-tillage (28.3%), and decreased at two years (23.4%) and at three years (18.3 %) of no-tillage soil compared with tillage soil (24.2%). Subsoil was a similar tendency. Liquid phase ratio in subsoil was increased than top soil.