• Title/Summary/Keyword: Granite soils

Search Result 270, Processing Time 0.026 seconds

Effect of Cyclic Freezing-Thawing on Compressive Strength of Decomposed Granite Soils (동결-융해 반복작용으로 인한 화강풍화토의 압축강도 특성 변화에 관한 연구)

  • Yoo, Chung-Sik;Shin, Boo-Nam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic freezing-thawing on the compressive strength characteristics of decomposed granite soils. A plane strain compression (PSC) tests were performed on a series of test specimens with different freezing-thawing cycles and fine contents to investigate the change in compressive strength under the process of freezing-thawing cycles. Also performed were scanning electron microscope (SEM) tests to investigate the change in structural rearrangement from a micro-scale point of view. The test results showed that the soil particles tend to conglomerate when subject to cycles of freezing and thawing, and that the soil with less fines exhibited decreased shear strength due to the cyclic freezing-thawing while the soils with a larger fine content showed the opposite trend.

Classification of calcicoles and calcifuges on the basis of the ratio of soluble to insoluble ca2+ and mg2+ in the leaves (可溶性, 不溶性 Ca2+ 과 MG2+ 比에 의한 好石灰 및 嫌石灰植物의 分類)

  • Kim, Joon-Ho;Kwak, Young-Se;Mun, Hyung-Tae
    • The Korean Journal of Ecology
    • /
    • v.15 no.3
    • /
    • pp.311-328
    • /
    • 1992
  • In other to classify calcicoles and calcifuges and calcifuges within plant communities occurring on limestone and granite soils in chungbuk province, korea, soil propertile, constancy for species by prsence or absence, and ratios of soluble to insoluble $Ca^{2+}$ and $Mg^{2+}$ were investigated. In the limestone soils ph values and $Ca^{2+}$ and $Mg^{2+}$ content, ranging 7.26 ~7.48, 5.32~7.37 mg $Ca^{2+}/g$ and 0.42~0.62 mg $Mg^{2+}/g$, respectively, were higher than those in the granite soil with ph 5.76, 1.03mg $Ca^{2+}/g$ and 0.24mg $Mg^{2+}/g$. species with high constancy in the 5 communities were classified into three groups; species group a(29~36% of total number of species) was composed of species occuring on the granite soil; group c(16~24%) is commonly distributed throughout both soils. Ratios of soluble to insoluble $Ca^{2+}$ and $Mg^{2+}$ ranged from 0.1 to 81.3 in the group a, 0.2 to 0.8 in the group b and 0.2 to 8.7 in the group c. species within each group can be divided into two groups based on the values of the ratio, below or above 1.0. consequently, each of the group a and c was classified again into two groups; the group a1 and c1 with the ratio of above 1.0 and the group a2 and c2 withbelow 1.0 but the ratio could not further subdivide the group b. from these results it was proposed that plants of the group a1 were termed as obligate calcicoles, the group b as obligate calcifuges, the group c1 as facultative calcicoles, the group c2 as facultative calcifuges and the group a2 as avoiding calcifuges.

  • PDF

Development of Revegetation Methods for Restoration of the Disturbed Slopes -Application on the Seed Attached Ripping Net Revegetation Methods- (급경사 비탈면의 녹화 공법 개발 -종자부착 리핑네트공법을 중심으로-)

  • Kim, Eui-Young;Kim, Nam-Choon;Kang, Jin-Hyung;Bae, Sun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.61-69
    • /
    • 2002
  • This study was conducted to develop revegetation methods for the restoration of the steep slopes by seed attached ripping net revegetation methods. In general, steep slopes with decomposed granite soils and ripping rock are easy to erode by precipitation and impossible to revegetate only using hydroseeding with core net mulching because of poor soil fertility. The Seed Attached Ripping Net Revegetation Methods(SALNRM) will be the most popular and sustainable methods to restore decomposed granite soils and ripping rock exposed slopes. The main results are summarized as follows; 1. The net size with $1.5cm{\times}1.0cm$ density was more suitable for growing plants, and increasing the ratio of the slow release fertilizer was better to make early coverage and to grow germinated plants. 2. The fertilizer bag made by the ratio of Peatmose : Vermiculite : Perlite : Quick release fertilize r : Slow release fertilizer = 10 : 2 : 5 : 3 : 4 (v : v) was the best for plant's growth. 3. According to the seed mixture experiments, even though not using foreign grasses, the SALNRM using native plants can make diverse plant composition. 4. The SALNRM will make same early ground coverage by only using native plants like using foreign grasses. The SALNRM would become the popular revegetation methods to restore decomposed granite soils and ripping rock exposed slopes in Korea.

금산지역 토양별 화학적 특성과 주요 용존성분

  • 송석환;이용규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.195-199
    • /
    • 2002
  • This study is for know chemistry of the representative soils from Keumsan, its relationships with dissolved compositions, and its absorption relationships within the flora. It has been done for two comparisons: 1) phyllite, shale and granite(PSG), and 2) granite and coal bearing shale(GC). Among the soil leachate of the PSG, cations are mainly low in the phyllite area while anions are mainly low in the granite area. In the soil compositions, Ca and Mg of the beans are high and Na is high in the granite area while Ca and Na of the perilla are high in the granite area and Mg is high in the phyllite area. In th both species, Na for the granite area and Mg for the phyllite area are high while Ca for the shale area is low. Among the flora, shale area shows low Ca and Mg contents while granite area shows slightly high Na contents, regardless the species. Compared with beans, perilla is low in the Mg and high in the Na contents. These relationships show that the contents of the soil leachate do not reflect absorption within the flora. Among the soil leachate of the GC, shale area is high in the most of the elements. Especially, SO$_4$ is over 15 times high In the phyllite area. In the soil, granite area shows high Ca, Na and low Mg contents. In the flora, the Miscanthus sinensis shows high Ca and Mg contents in the granite area while the Artemisia vulgaris shows high Ca, Ca and Mg contents in the shale area. These relationships for contents of the flora and soil leachate suggest that the flora has a different absorption according different species.

  • PDF

Suitability for Subgrade Material of Weathered Granite Soils in the Gansung area of Gangwon-do (강원도 간성지역에 분포하는 화강풍화토의 도로토공 재료특성 연구)

  • Jeoung, Jae-Hyeung;Yu, Jun;Kim, Jin-Man;Kim, Seung-Hyun;Lim, Kwang-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Upon encountering weathering soil at a construction site, it may be necessary to change the design and construction plans for geotechnical structures. When weathering soil is exposed to air, the weathering process proceeds rapidly, resulting in significant damage to geotechnical structures, particle defects, and an increase in moisture sensitivity. The management of weathering-soil compaction is challenging. Because the engineering properties of weathering-soils vary regionally, it is important to report the result of research into the regional characteristics of such soils. At two locations of granite gneiss in the Gansung area of Gangwon-do, geological studies were performed at 22 and 8 sites, respectively. At each site, test samples were collected for analysis by XRD and to measure particle size, consistency, and compaction. To evaluate the suitability of the material for road subgrade, we examined the interrelationship between CBR value and the uniformity coefficient, the 200 sieve passing ratio and the aggregate ${\geq}$ 2 mm) content. We found that for the weathered granite soil, aggregate sized > 2 mm has a significant effect on the CBR value. In addition, the mixing of aggregate sized > 2 mm with sub-quality soil improves the soil condition.

Examination of the Relationship between Average Particle Size and Shear Strength of Granite-derived Weathered Soils through 2-D Distinct-element Method (이차원 개별요소 수치해석을 통한 화강풍화토의 평균입자크기와 전단강도의 관계 규명)

  • Kim, Seon-Uk;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.77-86
    • /
    • 2012
  • We have carried out a series of numerical experiments to study the effect of average particle size on the mechanical properties of granite-derived weathered soils. A distinct-element method was adopted to study the changes in macro-scale mechanical properties with particle size and maximum-to-minimum particle size ratio. The numerical soil specimen with cohesion values of 0.25 MPa and internal friction angle of 29 degrees was prepared for reference. While keeping the porosity values constant, we varied particle size and size distribution to study how cohesion and internal friction angle changes. The experimental results show that the values of cohesion apparently decrease with increasing particle size. Changes in the values of internal friction angles are small, but there is a trend of increase in internal friction angle as the average particle size increases. This study demonstrates a possibility that the results of numerical experiments of this type may be used for rapid estimation of mechanical properties of granite-derived weathered soils. For example, when mechanical properties obtained through in situ tests and particle size data obtained through lab analysis are available for a site, it is expected that the mechanical properties of weathered granite soils with varying degrees of weathering (thus, varying particle size) may be estimated rapidly only with particle size data for that site.

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

The Effects of Geological Features on Forest Devastation in Kyungpook Province Area (지질(地質)이 경북(慶北) 산림황폐(山林荒廢)에 미친 영향(影響))

  • Son, Doo-Sik;Lee, Heon-Ho;Park, Sang-Jun;Jau, Jae-Gyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Forest devastation in Korea was caused by several factors such as internal factors from geological features and external factors from artificial forest damages including fuel wood collection from forests, forest fires, shifting cultivations and so on. According to the reports of 1935, lots of forest devastation in Kyungpook province area occurred around the main and branch stream of Nakdong river. Main factors of occurring forest devastation in 1935 were investigated by the methods of forest devastation rate and the population density at the basin of Nakdong river. But based on our study, forest devastation mainly occurred in rock zones of granite and granite gneiss, next to Nakdong formation but scarcely occurred in Hayang formation. Clay of the weathered soils of granite and granite gneiss was lost by rainfall, but remaining coarse-sandy soils(or grits) have poored conditions in vegetation's growth, which are due to high level of water permeability, lack of water-holding capacity and dried conditions. Generally, pine forests are mainly growing up in these regions. It is supposed that forest devastation was accelerated due to long periods of natural regeneration and no ability of natural regeneration by sprout after frequent collections of fuel wood and cuttings from pine forest on those grit areas. These results indicated that the high rate of forest devastation occurred around the basin with the high resident population density, which was partly due to forest damages by fuel collection. Moreover, both geological features and number of residents had much influence on forest devastation. Forest devastation was positively correlated with those variables(r=+0.73).

  • PDF

Comparison of Rainfall Seepage Characteristics of Gneiss and Granite Weathered Soil (편마암풍화토와 화강암풍화토의 강우 침투특성 비교)

  • Song, Young-Suk;Yoo, Yong-Jae;Kim, Tae-Wan;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.21-28
    • /
    • 2021
  • The factors of landslides depend on rainfall intensity, duration, and the characteristics of the soil slope. The conventional slope stability analysis has been carried out by assuming that the slope is saturated. But, a site slope consisting of unsaturated ground must be imitated and interpreted in order to explain a proper behavior of the slope due to rainfall. In this study, by using two major categories of soils in Korea, such as granite and gneiss weathered soils, landslide model test and numerical analysis have been compared with the difference of seepage and volumetric water content. In general, the permeability of gneiss weathered soil, which contains a lot of fines content, is slower than that of granite weathered soil. As a result, in extreme rainfall, numerical analysis can show results that can penetrate quickly, resulting in saturation or more dangerous collapse.

Experimental Study on the Permeability of Decomposed Granite Soil (마사토의 차수성에 관한 실험적 연구)

  • 이형수
    • Water for future
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 1974
  • On the constructions of fill type dams, usually the constructions materials is desired to be obtained in vicinity ofthe dam sitc to justify economical feasilblity of the project. In the stability analysis of the dams, core parts takesa small fraction of the slip circle and main function of core is to decrease dam permeability. This paper shows results of various tests as physical properties, compactions (using single, double triple and four times of the tandard compaction energy) and the permeability tests. Single decomposed granite and mixed materials with clay soils were used in this test. And conclusions of these tests are as follows; 1. Criteira of weathering ratio should be caleulated by density measarment. 2. Permeability coefficient maiuly depends on th #200 sieve passing, and also passing soil quantities depends on the weathering condition of the soil. 3. It was established that low weathered decomposed granite can not be used for the core materials of the fill type dams. On the other hand, moderately weathered decomposed granite soil with particles could pass through #200 sieve in a quantity over 10%, could chieve permeability in a magnitude of $1{\times}10^{-5} cm/see$. 4. With the decomposed granite soil it is possible to perform three times larger compaction energy than the standard energy without any problems.

  • PDF