• Title/Summary/Keyword: Gramian angular field

Search Result 6, Processing Time 0.018 seconds

Classification Method of Multi-State Appliances in Non-intrusive Load Monitoring Environment based on Gramian Angular Field (Gramian angular field 기반 비간섭 부하 모니터링 환경에서의 다중 상태 가전기기 분류 기법)

  • Seon, Joon-Ho;Sun, Young-Ghyu;Kim, Soo-Hyun;Kyeong, Chanuk;Sim, Issac;Lee, Heung-Jae;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.183-191
    • /
    • 2021
  • Non-intrusive load monitoring is a technology that can be used for predicting and classifying the type of appliances through real-time monitoring of user power consumption, and it has recently got interested as a means of energy-saving. In this paper, we propose a system for classifying appliances from user consumption data by combining GAF(Gramian angular field) technique that can be used for converting one-dimensional data to the two-dimensional matrix with convolutional neural networks. We use REDD(residential energy disaggregation dataset) that is the public appliances power data and confirm the classification accuracy of the GASF(Gramian angular summation field) and GADF(Gramian angular difference field). Simulation results show that both models showed 94% accuracy on appliances with binary-state(on/off) and that GASF showed 93.5% accuracy that is 3% higher than GADF on appliances with multi-state. In later studies, we plan to increase the dataset and optimize the model to improve accuracy and speed.

Analyzing performance of time series classification using STFT and time series imaging algorithms

  • Sung-Kyu Hong;Sang-Chul Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2023
  • In this paper, instead of using recurrent neural network, we compare a classification performance of time series imaging algorithms using convolution neural network. There are traditional algorithms that imaging time series data (e.g. GAF(Gramian Angular Field), MTF(Markov Transition Field), RP(Recurrence Plot)) in TSC(Time Series Classification) community. Furthermore, we compare STFT(Short Time Fourier Transform) algorithm that can acquire spectrogram that visualize feature of voice data. We experiment CNN's performance by adjusting hyper parameters of imaging algorithms. When evaluate with GunPoint dataset in UCR archive, STFT(Short-Time Fourier transform) has higher accuracy than other algorithms. GAF has 98~99% accuracy either, but there is a disadvantage that size of image is massive.

Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN

  • Liu, Gaoyang;Niu, Yanbo;Zhao, Weijian;Duan, Yuanfeng;Shu, Jiangpeng
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.53-62
    • /
    • 2022
  • The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor, outlier, etc.) caused by harsh environment, sensor faults, transfer omission and other factors. These anomalies seriously affect the evaluation of structural performance. Therefore, the effective analysis and mining of SHM data is an extremely important task. Inspired by the deep learning paradigm, this study develops a novel generative adversarial network (GAN) and convolutional neural network (CNN)-based data anomaly detection approach for SHM. The framework of the proposed approach includes three modules : (a) A three-channel input is established based on fast Fourier transform (FFT) and Gramian angular field (GAF) method; (b) A GANomaly is introduced and trained to extract features from normal samples alone for class-imbalanced problems; (c) Based on the output of GANomaly, a CNN is employed to distinguish the types of anomalies. In addition, a dataset-oriented method (i.e., multistage sampling) is adopted to obtain the optimal sampling ratios between all different samples. The proposed approach is tested with acceleration data from an SHM system of a long-span bridge. The results show that the proposed approach has a higher accuracy in detecting the multi-pattern anomalies of SHM data.

Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning (GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지)

  • Zhou, Yu;Lee, Seungeun;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF

Efficient One-dimensional Current Configuration and Encoding Method for ITSC Diagnosis of 3-Phase Induction Motor using CNN (CNN을 이용한 3상 유도전동기 ITSC 진단의 효율적인 1차원 전류 신호 구성 및 Encoding방법)

  • Yeong-Jin Goh
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.180-186
    • /
    • 2024
  • This paper proposes an efficient fault diagnosis method for ITSC(Inter-Turn Short Circuit) in three-phase induction motors using CNN. By utilizing only the D-axis component of the D-Q synchronous coordinate system, it compares SWM(Slide Window Method) and GAF(Gramian Angular Field) methods for image encoding. Results show GAF achieving ~74% accuracy, while SWM achieves ~65%, indicating GAF's superiority by 9%. Learning time (~14.74s) remains consistent, particularly with epochs ≤ 100, showcasing faster learning.

A Study on the Evaluation of Classification Performance by Capacity of Explosive Components using Convolution Neural Network (CNN) (컨볼루션 신경망(CNN)을 이용한 폭발물 성분 용량별 분류 성능 평가에 관한 연구)

  • Lee, Chang-Hyeon;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper is a study to evaluate the performance when classifying explosive components by capacity using a convolutional neural network (CNN). Among the existing explosive classification methods, the IMS steam detector method determines the presence or absence of an explosive only when the explosive concentration exceeds the threshold set by the user. The IMS steam detector has a problem of determining that even if an explosive exists, the explosive does not exist in an amount that does not exceed the threshold. Therefore, it is necessary to detect the explosive component even when the concentration of the explosive component does not exceed the threshold. Accordingly, in this paper, after imaging explosive time series data with the Gramian Angular Field (GAF) algorithm, it is possible to determine whether there are explosive components and the amount of explosive components even when the concentration of explosive components does not exceed a threshold.