• Title/Summary/Keyword: Gram positive

Search Result 1,522, Processing Time 0.027 seconds

Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

  • Kang, Chang-Geun;Hah, Dae-Sik;Kim, Chung-Hui;Kim, Young-Hwan;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC). The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute). All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from $0.6\;{\mu}g/ml$ to $5000\;{\mu}g/ml$. The lowest MIC ($0.6\;{\mu}g/ml$) and MBC ($1.22\;{\mu}g/ml$) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively.

Antibacterial Activities of Essential Oil from Zanthoxylum schinifolium Against Food-Borne Pathogens (산초 정유성분의 식중독균에 대한 항균 활성)

  • Jang, Mi-Ran;Seo, Ji-Eun;Lee, Je-Hyuk;Kim, Gun-Hee
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.206-213
    • /
    • 2010
  • In this study, the antibacterial activities of essential oil from Zanthoxylum schinifolium against four Gram-positive bacteria and six Gram-negative bacteria were investigated. The antibacterial activity of the oils was determined using the agar-well diffusion assay, MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). In particular, essential oil from Z. schinifolium showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Essential oil from Z. schinifolium displayed large inhibition zones especially against Bacillus cereus (31 mm). At concentrations between 0 and $20\;{\mu}g/mL$ the oils showed an antibacterial effect against both Gram-negative and Gram-positive bacteria. The minimum inhibitory concentration (MIC) values against nine bacteria ranged from 1.25 to $5\;{\mu}g/mL$. The minimum bactericidal concentration (MBC) values against eight bacterial ranged from 2.5 to $20\;{\mu}g/mL$, except Shigella sonnei. Furthermore, our finding on the antibacterial activities of essential oils from Zanthoxylum schinifolium validated the use of this plant for medical purposes.

Chemotaxonomic Classification of Marine Bacteria on the Basis of Fatty Acid Compositions

  • KANG Won-Bae;SEONG Hee-Kyung;MOON Chang-Ho;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.1013-1020
    • /
    • 1997
  • The cellular fatty acids of 47 marine bacteria representing the genus Alteromonas, Arthrobacter, Bacillus, Micrococcus, Pseudomonas, Shewanella, Staphylococcus and Stenotrophomonas were determined by a gasliquid chromatographic analysis. Sixty-eight different fatty acids with 10 to 20 carbon atoms were detected in marine bacteria. Of the eight genus examined, 14:0, 16:0 and i17:0 were detected in all, while i14:0, a15:0, i16:0, and 15:0 were found in most of all. There were significant differences in the fatty acid patterns between Gram positive and Gram negative bacteria. Bacteria of Gram positive genus showed relatively high contents of the branched type fatty acids, while the major fatty acids in Gram negative were unsaturated and straight forms. Phylogenetic relationships between marine bacteria defined by the cellular fatty acid patterns represented obvious differences between Gram positive and Gram negative genera, even in respective genus. Therefore, the bacterial classification and identification can be accomplished more easily and rapidly based on the cellular fatty acid profiles than the conventional methods.

  • PDF

봉독과 Sweet Bee Venom의 항균 및 항산화능 비교연구

  • An, Joong-Chul;Kwon, Ki-Rok;Lee, Seong-Bae;Lim, Tae-Jin
    • Journal of Pharmacopuncture
    • /
    • v.9 no.3 s.21
    • /
    • pp.97-104
    • /
    • 2006
  • Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH(1,1-diphenyl-2picrylhydrazyl) free radical scavenging assay and Thiobarbituric Acid Reactive Substances(TBARS) assay were conducted. Results : 1. Antibacterial activity against gram negative E. coli was greater in the Sweet Bee Venom group than the Bee Venom group. 2. Antibacterial activity against gram positive St. aureus was similar between the Bee Venom and Sweet Bee Venom groups. 3. DPPH free radical scavenging activity of the Bee Venom group showed 2.8 times stronger than that of the Sweet Bee Venom group. 4. Inhibition of lipid peroxidation of the Bee Venom group showed 782 times greater than that of the Sweet Bee Venom group. Conclusions : The Bee Venom group showed outstanding antibacterial activity against gram positive St. aureus, and allergen-removed Sweet Bee Venom group showed outstanding antibacterial activity against both gram negative E. coli and gram positive St. aureus. For antioxidant effects, the Bee Venom was superior over the Sweet Bee Venom and the superiority was far more apparent for lipid peroxidation.

Mechanisms of Selective Antimicrobial Activity of Gaegurin 4

  • Kim, Hee-Jeong;Lee, Byeong-Jae;Lee, Mun-Han;Hong, Seong-Geun;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • Gaegurin 4(GGN 4), an antimicrobial peptide isolated from a Korean frog, is five times more potent against Gram-positive than Gram-negative bacteria, but has little hemolytic activity. To understand the mechanism of such cell selectivity, we examined GGN4-induced $K^+$ efflux from target cells, and membrane conductances in planar lipid bilayers. The $K^+$ efflux from Gram-positive M. luteus(2.5 ${\mu}g/ml$) was faster and larger than that from Gram-negative E. coli(75 ${\mu}g/ml$), while that from RBC was negligible even at higher concentration(100 ${\mu}g/ml$). GGN4 induced larger conductances in the planar bilayers which were formed with lipids extracted from Gram-positive B. subtilis than in those from E. coli(p<0.01), however, the effects of GGN4 were not selective in the bilayers formed with lipids from E. coli and red blood cells. Addition of an acidic phospholipid, phosphatidylserine to planar bilayers increased the GGN4-induced membrane conductance(p<0.05), but addition of phosphatidylcholine or cholesterol reduced it(p<0.05). Transmission electron microscopy revealed that GGN4 induced pore-like damages in M. luteus and dis-layering damages on the outer wall of E. coli. Taken together, the present results indicate that the selectivity of GGN4 toward Gram-positive over Gram-negative bacteria is due to negative surface charges, and interaction of GGN4 with outer walls. The selectivity toward bacteria over RBC is due to the presence of phosphatidylcholine and cholesterol, and the trans-bilayer lipid asymmetry in RBC. The results suggest that design of selective antimicrobial peptides should be based on the composition and topology of membrane lipids in the target cells.

Isolation and Characterization of Biofouling Bacteria in Ultra-high Purity Water Used in the Semiconductor Manufacturing Process

  • Kim, In-Seop;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.554-558
    • /
    • 2000
  • Bacteria were isolated and identified from an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16-megabyte DRAM semiconductor manufacturing. Scanning electron microscopic and microbiological observations revealed that the primary source of the bacteria isolated from the UHPW was detached cells from biofilms developed on the pipe wall through which the UHPW, a man-made and extremely nutrient poor environment, was passing. About 63-65% of the bacteria isolated from the UHPW and the pipe wall were Gram-positive, whereas only 10% of the bacteria isolated from the feed water were Gram-positive. The of Gram-positive bacteria and seven genera of Gram-negative bacteria. Strains of the UHPW bacteria effectively adhered to and formed a biofilm on the surface of polyvinyl chloride (PVC) pipe.

  • PDF

Characteristics of Carbon Source Utilization by Heterotrophic Bacteria Isolated from Internal Organs of Starfish (Asterias amurensis) (불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균의 탄소원 이용 특성)

  • 이건형;송경자;이오형;최문술
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.57-61
    • /
    • 2002
  • To investigate the characteristics of carbon sources utilization by the intestinal microflora of starfish, starfishes (Asterias amurensis) were collected from the South Sea near Jangheung-gun sumun-ri of Jeollanam-do on July 14,2000. The population densities of heterotrophic bacteria were in the range of $8.65{\pm}0.65{\times}10^3\cfu{\cdot}g^{-1}$ in the interval organs of starfish. Total 24 strains (Gram-negative bacteria. 11 strains, Gram-positive bacteria: 13 strains) from the internal organs of starfish were isolated. Dominant bacteria were Genus nbrio, Staphylococcus, and Corynebacterium. A high percentage of isolates was Gram positive rods. The catalase and oxidase positive were shown 54.2% and 20.8% of isolated bacteria, respectively. Isolated Gram negative and positive bacteria utilized various carbon sources. Among them, glucose could be utilized by all the isolated Gram negative bacteria, and sucrose, mannose, and maltose were utilized by a relatively high percentage of isolates. On the other hands, adipate and phenyl acetate were shown no utilization. In case of Gram positive bacteria, glucose was shown the highest utilization and the next highest utilization was fructose, trehalose, and maltose.

The Antibiotic Activities of Some Korean Lichenes (한국산지의류의 항균작용에 관한 연구)

  • 한세호
    • YAKHAK HOEJI
    • /
    • v.10 no.4
    • /
    • pp.7-20
    • /
    • 1966
  • 1. Of the 32 extracts from Genus of lishenes broth tested for antimicrobial activity, 28 inhibited at least one of the 3 test microorganisms used. 2. Twenty seven lichnes broth from 32 species tested were active against at least one of the Gram-positive bacteria M. pyogenes var, aureus 203 p, and twenty four lichenes broth from 32 Species tested were active against at least one of the Gram-positive bacteria Bacillus subtilis ATCC 6633. 3 Twenty five lichenes broth from 32 species tested were active against at least one of the Gram-negative bacteria Escherichia coli 0.126. 4. The antibiotic substances in lichenes were readily extracted by organic solvents.

  • PDF

Screening of Leaves of Higher Plants for Antibacterial Action

  • Bae, Ki-Hwan;Byun, Jae-Hwa
    • Korean Journal of Pharmacognosy
    • /
    • v.18 no.1
    • /
    • pp.1-4
    • /
    • 1987
  • The methanol and benzene extracts of the leaves of 55 higher plants in Korea were tested for their antibacterial activity against three Gram positive bacteria, Streptococcus mutans, Staphylococcus aureus and Bacillus subtilis, and one Gram negative bacterium Escherichia coli. Among them, the methanol extract of the leaves of Liriodendron tulipifera showed remarkably potent antibacterial activity against both Gram positive and negative bacteria.

  • PDF

A comparative study of the major component of the protein secretion machinery, secY, in gram positive bacillus subtilis and gram negative escherichia coli. (그람 양성균인 Bacillus subtilis와 그람 음성균인 escherichia coli에서 protein secretion에 중요 역할을 하는 secY에 대한 비교 연구)

  • 서주원
    • The Microorganisms and Industry
    • /
    • v.17 no.1
    • /
    • pp.10-18
    • /
    • 1991
  • A phylogenetic comparison of homologous protein can often supplement genetic and biochemical analysis by revealing conserved structures that are critical for function(Waugh et al., 1989). I therefore isolated a secY homologue from B. subtilis, a gram positive bacterium evolutionary distant from E. coli. The comparison and interplay between these two bacterial systems should contribute greatly to our understanding of the functions and interactions within systems evolved for protein translocation in both prokaryotic and eukaryotic organisms.

  • PDF