• 제목/요약/키워드: Grain-oriented electrical steel

검색결과 26건 처리시간 0.028초

이방향 여자형 SST를 이용한 이방성 전기강판의 인가자계 방향에 따른 2차원 자계특성 측정 (Measurement of 2 Dimensional Magnetic Property of Grain-oriented Electrical Steel Sheet According to Exciting Field Direction using SST with 2 Axes Excitation)

  • 음영환;김홍정;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.250-257
    • /
    • 2006
  • It is well known that Grain-oriented electrical steel sheets have two dimensional magnetic properties according to the direction of exciting field such as non-linear phase difference between magnetic flux density and magnetic field intensity vectors, different iron loss and permeability even when an alternating magnetic field is applied. The measurement and application of the two dimensional magnetic properties of the Grain-oriented electrical steel sheets, therefore, are very important for the design and precise performance analysis of electric machines made of them. As the direction of exciting field changes, in this paper, the two dimensional magnetic properties of a Grain-oriented electrical steel sheet, i.e., non-linear B-H curves, phase difference between B and H, and iron loss characteristics, are measured using SST(Single Sheet Tester) which has two axes excitation. The measured results are presented in two ways: using $(B,\theta_B)$ method and using hysteresis loops along rolling and transverse directions, respectively.

전기강판의 벡터 자기특성 모델링을 위한 개선된 E&S Vector Hysteresis Model (Improved E&S Vector Hysteresis Model for the Precise Modeling of Vector Magnetic Properties of Electrical Steel Sheet)

  • 송민호;윤희성;고창섭
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1684-1692
    • /
    • 2011
  • Recently, several vector hysteresis models such as vector Preisach, vector Jiles-Atherton and dynamic E&S model have been proposed to describe vector magnetic properties of electrical steel sheets. However, it is still difficult to find an adequate vector hysteresis model in finite element application for both the Non-oriented and Grain-oriented electrical steel sheets under alternating and rotating field conditions. In this paper, an improved E&S vector hysteresis model is suggested to describe the vector magnetic properties of both Non-oriented and Grain-oriented electrical steel sheets under various magnetic field conditions including alternating and rotating magnetic field conditions. The validity of the proposed model is tested through comparisons with the experimental results under various magnetic field conditions.

극박 방향성 전기강판에서 장력코팅에 의한 철손 감소효과 고찰 (Effect of tension coating on reducing iron losses of thin grain-oriented electrical steel sheets)

  • 조성수;김상범;허남회;소준영;서판석;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1281-1282
    • /
    • 2007
  • Effect of tension coating on reducing iron losses of thin grain-oriented 3% Si-Fe steel sheets was investigated. Conventional grain-oriented electrical steel sheets have a forsterite coating layer and a tension coating layer in order to apply tensile stress to the rolling direction of the sheets. However the proposed coating method in this paper is to form only a tension coating layer on the both surfaces of the sheets. Iron losses with the tension coating were reduced by 8% under the condition of 1.7 T and 60 Hz. Consequently the proposed tension coating is applicable to $80{\mu}m$-thick 3% Si-Fe steel sheets.

  • PDF

전기강판의 자기특성 측정을 위한 2방향 여자 형 Single Sheet tester 개발 (Double-Excitation Type Single Sheet Tester for the Measurement of the Magnetic Characteristics of the Electrical Steel Sheets)

  • 김홍정;고창섭;홍선기;신판석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권10호
    • /
    • pp.461-469
    • /
    • 2005
  • In this paper, a double-excitation type single sheet tester is developed to measure the magnetic characteristics of the electrical steel sheets. The developed system has the uniform magnetic field area of 20$\times$20mm$^{2}$, and can be applied to the measurement of the magnetic characteristics of the Non-oriented and Grain oriented electrical steel sheets. In the developed system, the magnetic flux density and magnetic field intensity are measured by using B-coil and H-coil, respectively. The B-coil has 1 turn search coil for each direction, and H-coil has 640 and 640 turns for rolling direction and transverse direction on the Im thickness Glass-Epoxy basement, respectively. Through experiments, it Is shown that the system can measure the magnetic characteristics up to 1.87 of magnetic flux density in the rolling direction in case of the Grain oriented electrical steel sheet. The measured results are compared with those measured in Okayama university, .Japan.

고효율 변압기용 레이저자구 전기강판 개발 (Development of Electrical Steel by Laser Magnetic Domain Refinement for Applying to Transformers of High Energy Efficiency)

  • 권오열;차상윤;김지현;하경호;김재관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.625-626
    • /
    • 2008
  • The magnetic domain-refining techniques such as ball scratching, laser irradiation and plasma have been developed to reduce the domain wall spacing and thus iron losses in Fe-3%Si grain-oriented silicon steels. In view point of magnetic properties, it was supposed that the locally residual stresses change the magnetoelastic energy of the material and thus the spacing between $180^{\circ}$ domain walls decreases in order to reduce the magnetostatic energy. The effect of laser irradiation on iron loss and magnetostriction reduction for Fe-3%Si grain-oriented steel were investigated. Since the local tensile stresses were induced at the surface of Fe-3%Si steel by the laser irradiation, the minimum iron loss caused by reducing eddy current loss was obtained in spiete of the decrease of permeability by hindering eddy current loss was obtained in spite of the decrease of permeability by hindering the domain wall movement around the induced stress field. Furthermore, the laser treated 3%Si steel has lower magnetostriction as compared to non laser-treated steel and is less sensitive to applying pre-stresses due to the volume reduction of $90^{\circ}$ domain in materials.

  • PDF

방향성 전기강판에서 1차 재결정시 Si 함량과 냉간압연 횟수, 승온 속도에 따른 집합조직 발달 (Texture Evolution during Primary Recrystallization and Effect of Number of Cold Rolling Passes, Heating Rate, and Si Contents in Grain-Oriented Electrical Steel)

  • 전성호;박노진
    • 열처리공학회지
    • /
    • 제31권6호
    • /
    • pp.269-274
    • /
    • 2018
  • Grain-oriented electrical steel sheets are mainly used as core materials for transformers and motors. They should have excellent magnetic properties such as low core loss, high magnetic flux density and high permeability. In order to improve the magnetic properties of the electrical steel sheet, it is important to form Goss oriented grains with a very strong {110}<001> orientation. Recently, efforts have been made to develop Goss grains by controlling processes such as hot rolling, cold rolling, and primary and secondary recrystallization. In this study, the sheets containing 3.2 and 3.4wt.% Si were used, which were rolled with 1 and 10 passes with total thickness reduction of 89%. Heating was carried out for primary recrystallization with different heating rates of $25^{\circ}C/s$ and $24^{\circ}C/min$ until $720^{\circ}C$. The behavior of Goss-, {411}<148>-, and {111}<112>-oriented grains were analyzed using X-ray diffraction(XRD) and electron back-scatter diffraction(EBSD) analysis. The area fraction of Goss-oriented grains increased with the number of rolling passes during cold rolling; however, after the primary recrystallization, the area fraction of the Goss grains was higher and exact Goss grains were found in the specimens subjected to rapid heating after one rolling pass.

A Computationally Efficient Finite Element Analysis Algorithm Considering 2-D Magnetic Properties of Electrical Steel Sheet

  • Yao, Yingying;Li, Wei;Yoon, Hee-Sung;Fujiwara, Koji;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.385-390
    • /
    • 2008
  • For taking account of the two-dimensional magnetic properties of a grain-oriented electrical steel sheet, the effective anisotropic tensor reluctivity is examined, and a computationally efficient algorithm is suggested by using the response surface method to model the two-dimensional magnetic properties. It is shown that the reconstructed two-dimensional magnetic properties are fairly effective to stabilize the convergence characteristics of the Newton-Raphson iteration in the nonlinear magnetic field analysis.

전기강판의 회전자계 하에서의 2차원 자계특성 측정 (Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields)

  • 음영환;홍선기;신판석;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.

방향성 자기재료에 의한 유도전동기의 효율향상설계에 관한 연구 (A Study on the Design of High Efficiency Induction Motor by Grain-oriented Magnetic Cores)

  • 황영문;이인칠;안진우;박한웅
    • 대한전기학회논문지
    • /
    • 제38권3호
    • /
    • pp.173-181
    • /
    • 1989
  • A split-phase induction motor with asymmetrical magnetizing reactance axes develops starting torque and its efficiency can be high under certain conditions. In this paper, one method of producing the asymmetry of magnetizing reactance axes is described. The grain-oriented silicon steel core is used to produce the asymmetric axes instead of non-oriented silicon steel core which is used in general motors. The optimum design method for the motor is suggested and analyzed. To verify this suggestion, the permanent capacitor run type induction motors are designed to be driven at balanced condition by its asymmetrical effect, and then the oscillating torque due to the asymmetry of motor structures are analyzed. Tests of the sample motor have shown good performance comparable to ordinary types. This motor structure can be used where high effciency and reliability are required, and also the amount of core materials can be reduced due to its high permeability.

  • PDF