• 제목/요약/키워드: Grain temperature

검색결과 2,931건 처리시간 0.03초

곡물(糓物)의 열전도계수(熱傳導係數)에 관(關)한 연구(硏究) (Thermal Conductivities of Grain)

  • 김만수;고학균
    • Journal of Biosystems Engineering
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 1982
  • The thermal conductivies of grain are influenced by many physical factors such as' initial temperature, moisture content, composition, bulk density or porosity of grain. However, not only few researchers considered all these factors in determining thermal conductivities of grain but also many researchers considered only moisture content as a major effective factor on the thermal conductivity. This study was conducted to experimentally determine the thermal conductivities of rough rice (3 Japonica-type, 3 Indica-type) and barley(covered, naked) as a function of initial temperature, moisture content and porosity of grain, and to investigate the effect of those physical factors on the thermal conductivities of grain. The results of this study are summarized as follows; 1. The average time correction value for this experimental apparatus was 7 sec, which. was insignificant to the calculated thermal conductivity. The resulting conductivity for considering time correction value was only 4.9 percent higher than that calculated by the non-corrected equation. 2. The thermal conductivity was in the range of 0.1208~0.2058W/$m^{\circ}K$ for naked barley, 0.1138~0.1724W/$m^{\circ}K$ for covered barley, 0.0912~0.1864W/$m^{\circ}K$ for Japonica-type rice and 0.086~0.1774W/$m^{\circ}K$ for Indica-type rice. 3. The thermal conductivities of grain increased with initial temperature and moisture content of grain but decreased with porosity of grain. 4. The regression equations of the thermal conductivity of each grain were determined as a function of initial temperature, moisture content and porosity. The regression equations of the thermal conductivity of both Japonica-type and Indica-type rough rice were also determined.

  • PDF

온도 상승 조건이 벼의 수량 및 수량구성요소에 미치는 영향 (Effects of Elevated Air Temperature on Yield and Yield Components of Rice)

  • 이규종;뉴안덕;최덕환;반호영;이변우
    • 한국농림기상학회지
    • /
    • 제17권2호
    • /
    • pp.156-164
    • /
    • 2015
  • 기후변화로 야기되는 미래의 고온 환경은 벼의 생산성을 저하시킬 것으로 예측되고 있다. 본 연구에서는 기후변화에 따른 국내 벼 생산성의 신뢰성 있는 영향평가 기초자료를 확보하기 위해 고온 환경에서의 벼의 수량과 수량 구성 요소의 반응을 조사하고 분석하였다. 실험은 1/5000a 와그너 포트를 이용하여 2008년과 2009년에 걸쳐 서울대학교 부속실험농장($37^{\circ}16^{\prime}N$, $128^{\circ}59^{\prime}E$)의 온도조절 플라스틱 하우스에서 실시되었다. 2008년에는 자포니카계의 화성벼를 공시품종으로 이용하였으며, 시비수준을 $120kg\;N\;ha^{-1}$$180kg\;N\;ha^{-1}$로 하였다. 온도처리는 대기온도, 대기온도 대비 $+1.5^{\circ}C$, $+3.0^{\circ}C$의 세 수준으로 하였다. 2009년에는 화성벼와 통일계의 다산벼를 공시품종으로 하여 $120kg\;N\;ha^{-1}$ 수준으로 시비하였다. 온도처리는 대기온도, 대기온도 대비 $+1.5^{\circ}C$, $+3.0^{\circ}C$$+5.0^{\circ}C$ 수준으로 처리하였다. 수량 및 수량구성요소의 온도처리에 따른 영향은 품종별로 상이한 반응을 보였다. 이삭수와 이삭당 영화수는 두 품종 모두 온도처리의 영향을 받지 않았으나, 천립중과 등숙률에 대해 화성벼는 $5.0^{\circ}C$, 다산벼는 $1.5^{\circ}C$ 이상의 온도처리에서 유의하게 감소하였다. 포트당 수량은 화성벼의 경우 $5.0^{\circ}C$, 다산벼는 $3.0^{\circ}C$$5.0^{\circ}C$ 온도처리에서 유의한 감소를 나타냈다. 등숙기간 동안의 평균기온에 대한 천립중과 등숙률 반응 또한 품종별로 다르게 나타났다. 다산벼의 경우 $23^{\circ}C$ 이상의 평균 온도에 대해 등숙률과 천립중이 급격히 감소한데 반해, 화성벼는 $23^{\circ}C$부터 $27^{\circ}C$ 범위에 대해 등숙률과 천립중의 변화가 크지 않았다. 기후변화에 의한 지속적인 기온상승이 예상되는 가운데 온도상승에 따른 등숙률과 천립중의 감소는 미래 기후 환경에서의 벼의 수량 감소를 야기하는 주요 원인으로 예측된다. 다만, 상승된 기온에 대한 벼의 반응은 품종별로 상이하기 때문에 고온에 둔감한 품종의 도입 또는 그러한 특성을 지닌 품종의 육종을 통해 기후변화에 따른 수량 감소의 위험을 낮출 수 있을 것이다.

재결정 및 결정립 성장이론에 기초한 Alloy 718의 조직예측 모델에 대한 재료상수 결정방법 (Determination of Material Parameters for Microstructure Prediction Model of Alloy 718 Based on Recystallization and Grain Growth Theories)

  • 염종택;홍재근;김정한;박노광
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.491-497
    • /
    • 2011
  • This work describes a method for determining material parameters included in recrystallization and grain growth models of metallic materials. The focus is on the recrystallization and grain growth models of Ni-Fe based superalloy, Alloy 718. High temperature compression test data at different strain, strain rate and temperature conditions were chosen to determine the material parameters of the model. The critical strain and dynamically recrystallized grain size and fraction at various process conditions were generated from the microstructural analysis and strain-stress relationships of the compression tests. Also, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the average grain size data obtained from other compression tests of the Alloy 718 specimens with the initial grain size of $59.5{\mu}m$.

과부하 열처리를 적용하여 용융드래그방법으로 제작한 마그네슘합금의 특성 (Characteristics of Magnesium Alloy Fabricated by Melt Drag Method with Applying Overheating Treatments)

  • 한창석;이찬우
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.414-418
    • /
    • 2022
  • Magnesium alloy is the lightest practical metal. It has excellent specific strength and recyclability as well as abundant reserves, and is expected to be a next-generation structural metal material following aluminum alloy. This paper investigated the possibility of thin plate fabrication by applying a overheating treatment to the melt drag method, and investigating the surface shape of the thin plate, grain size, grain size distribution, and Vickers hardness. When the overheating treatment was applied to magnesium alloy, the grains were refined, so it is expected that further refinement of grains can be realized if the overheating treatment is applied to the melt drag method. By applying overheating treatment, it was possible to fabricate a thin plate of magnesium alloy using the melt drag method, and a microstructure with a minimum grain size of around 12 ㎛ was obtained. As the overheating treatment temperature increased, void defects increased on the roll surface of the thin plate, and holding time had no effect on the surface shape of the thin plate. The fabricated thin plate showed uniform grain size distribution. When the holding times were 0 and 30 min, the grain size was refined, and the effect of the holding time became smaller as the overheating treatment temperature increased. As the overheating temperature becomes higher, the grain size becomes finer, and the finer the grain size is, the higher the Vickers hardness.

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.

벼 등숙기 기온 및 수발아가 종실 품질 및 이화학적 특성에 미치는 영향 (Investigation of Changes in Grain Quality and Physicochemical Properties of Rice According to the Temperature during the Ripening Stage and Preharvest Sprouting)

  • 이현석;이윤호;황운하;정재혁;양서영;이충근;최명구
    • 한국작물학회지
    • /
    • 제65권4호
    • /
    • pp.294-302
    • /
    • 2020
  • 등숙기간 동안의 온도에 따라서 동일한 출수 후 일수가 경과하더라도 출수 후 적산온도가 달라져 종실의 등숙단계가 달라지기 때문에 수발아에 영향을 줄 수 있는 종실의 특성이 달라지게 된다. 그렇기 때문에 수발아 검정을 위한 처리 시점은 출수 후 일수가 아닌 출수 후 특정 적산온도에 조건을 맞춰 시험을 진행해야 한다. 한편 수발아 발생은 등숙기간 동안의 온도에 따라서 크게 달라진다. 이에 따라서 발생하는 전분립의 구조, 전분함량 및 ABA함량의 변이 등은 수발아 발생에 영향을 줄 것으로 생각되며, 특히 고온등숙 시 수발아 발생율의 증가와 종실 전분립의 구조, 유리당 함량 등 종실 이화학적 특성 변이와의 관계에 대한 추가적인 검토가 필요할 것으로 생각된다. 또한 고온등숙시 수발아 발생율이 증가하기 때문에 등숙기 고온에 노출되지 않도록 이앙시기를 조절하여 수발아 발생위험을 감소시켜야 한다.

Effects of Microstructure on the Fretting Wear of Inconel 690 Steam Generator Tube

  • Hong, Jin-Ki;Kim, In-Sup;Park, Chi-Yong;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.132-141
    • /
    • 2002
  • The effects of microstructure on fretting wear were investigated in Inconel 690 tube. The microstructure observation indicated that the solution annealing temperature and time affected the grain size of the Inconel 690 tubes. The carbide morphology, along grain boundaries, was mainly affected by thermal treatment time and temperature. The wear test results showed that specimens with larger grain size and with coarse carbides along grain boundaries had better wear resistance. Cracks were found in specimens with carbides along the grain boundary, while few cracks were found in carbide free specimens. It seemed that the carbides on grain boundary assisted crack formation and propagation in carbide containing specimens. On the other hand, the micro-hardness of specimen did not have a major role in fretting wear. It could be inferred from the SEM images of worn surfaces that the main wear mechanism of carbide containing specimen was delamination, while that of carbide free specimen was abrasion.

AZ31 합금의 온간 부풀림 성형시 결정립 변화에 관한 연구 (Grain Evolution during Bulge Blow forming of AZ31 Alloy)

  • 백성규;이영선;이정환;권용남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.452-455
    • /
    • 2008
  • In the present study, blow forming characteristics of commercially roiled AZ31 alloy sheets were investigated. Two different kinds of AZ31 sheets were originally fabricated by using direct casting and strip casting methods respectively. Both sheets have similar grain sizes of about $7{\mu}m$ with a relatively equiaxed structure after rolling. A series of tensile tests were carried out to get flow behavior in terms of temperature and strain rate. Also, grain size effect was investigated by annealing as-received sheet at elevated temperatures. Elongation increased with temperature increment as well expected. However, the differences in tensile test condition did not give much difference in elongation even at the temperature range where a large elongation would be expected with such as fine grain of $7{\mu}m$. Blow forming experiments showed that forming condition did not result in higher difference in dome height. However, the interesting feature from this study was that formability of this AZ31 alloy got different with stress condition. Firstly, biaxial stress condition might result in lower temperature and strain rate dependencies compared to uniaxial tension results for both DC and SC sheets. Secondly, DC showed slower grain growth in uniaxial tension than in biaxial stress state while SC has much higher grain growth rage in uniaxial tension than in bulging.

  • PDF

Effect of the Sintering Temperature on Electrical Properties of Porous Barium-strontium Titanate Ceramics

  • Kim, Jun-Gyu;Sim, Jae-Hwang;Cho, Won-Seung
    • 한국세라믹학회지
    • /
    • 제40권1호
    • /
    • pp.5-10
    • /
    • 2003
  • Porous barium-strontium titanate ceramics were fabricated by adding corn- or potato-starch (are referred to as starch). The effect of sintering temperature on the microstructure and electrical properties of the porous ceramics was investigated. The room-temperature electrical resistivity of the barium-strontium titanate ceramics decreased with sintering temperature. The porosity and pore size were decreased and the grain size was increased with increasing the sintering temperature. The porosity and grain size of the barium-strontium titanate ceramics with corn-starch sintered at 1300 and 1450$^{\circ}C$ were 28.5, 22.6% and 3.2, 6.2 $\mu\textrm{m}$, respectively. The average pore sizes of the barium-strontium titanate ceramics with corn-starch sintered at 1300, 1400 and 1450$^{\circ}C$ were 0.5, 0.3 and 0.2 $\mu\textrm{m}$, respectively. The decrease in the room-temperature resistivity with increasing sintering temperature is attributed mainly due to the increase of grain size and the decrease of the electrical barrier height of grain boundaries as well as the partial decrease of porosity.

시뮬레이션에 의한 산물(散物) 저장(貯藏) 벼의 온도(溫度), 함수율(含水率) 및 품질변화(品質變化)의 예측(豫測) (Prediction of Temperature, Moisture Content and Quality Changes in Stored Bulk Rough Rice)

  • 금동혁;김재열
    • Journal of Biosystems Engineering
    • /
    • 제16권1호
    • /
    • pp.49-59
    • /
    • 1991
  • A numerical model was developed to predict grain temperature, moisture content, and drymatter loss of rough rice in a grain storage bin. This model simulated conduction, natural convection, and mass transfer occuring inside a storage bin. The results obtained from the study were as follows. 1. The predicticted results agreed well with the measured results. 2. Rough rice could be store safely for one year in Suweon, Dajeon, and Jingu area. 3. Aeration of 5-day was required to control grain temperature and moisture content rise early in Jun and July, respectively.

  • PDF