DOI QR코드

DOI QR Code

Determination of Material Parameters for Microstructure Prediction Model of Alloy 718 Based on Recystallization and Grain Growth Theories

재결정 및 결정립 성장이론에 기초한 Alloy 718의 조직예측 모델에 대한 재료상수 결정방법

  • 염종택 (재료연구소(KIMS), 특수합금연구그룹) ;
  • 홍재근 (재료연구소(KIMS), 특수합금연구그룹) ;
  • 김정한 (재료연구소(KIMS), 특수합금연구그룹) ;
  • 박노광 (재료연구소(KIMS), 특수합금연구그룹)
  • Received : 2011.08.18
  • Accepted : 2011.10.10
  • Published : 2011.11.01

Abstract

This work describes a method for determining material parameters included in recrystallization and grain growth models of metallic materials. The focus is on the recrystallization and grain growth models of Ni-Fe based superalloy, Alloy 718. High temperature compression test data at different strain, strain rate and temperature conditions were chosen to determine the material parameters of the model. The critical strain and dynamically recrystallized grain size and fraction at various process conditions were generated from the microstructural analysis and strain-stress relationships of the compression tests. Also, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the average grain size data obtained from other compression tests of the Alloy 718 specimens with the initial grain size of $59.5{\mu}m$.

Keywords

References

  1. J. T. Yeom, C. S. Lee, J. H. Kim, N. K. Park, 2007, Finite-element Analysis of Microstructure Evolution in the Cogging of an Alloy 718 Ingot, Mater. Sci. Eng. A, Vol. A449-451, pp. 722-726.
  2. C. M. Sellars, 1990, Modelling Microstructural Development during Hot Rolling, Met. Sci. Technol., Vol. 6, No. 11, pp. 1072-1081. https://doi.org/10.1179/mst.1990.6.11.1072
  3. M. Suehiro, K. Sato, Y. Tsukano, H. Yada, T. Senuma, Y. Matsumura, 1987, Computer Modeling of Microstructural Change and Strength of Low Carbon Steel in Hot Strip Rolling, Trans. Iron Steel Inst. Jpn., Vol. 27, No. 6, pp. 439-445. https://doi.org/10.2355/isijinternational1966.27.439
  4. Y. Saito, T. Enami, T. Tanaka, 1985, The Mathematical Model of Hot Deformation Resistance with Reference to Microstructural Changes during Rolling in Plate Mill, Trans. Iron Steel Inst. Jpn., Vol. 25, No. 11, pp. 1146-1155. https://doi.org/10.2355/isijinternational1966.25.1146
  5. C. Devadas, I. V. Samarasekera, E. B. Hawbolt, 1991, The Thermal and Metallurgical State of Steel Strip during Hot Rolling: Part III. Microstructural Evolution, Metall. Mater. Trans., Vol. 22, No. 2, pp. 335-349. https://doi.org/10.1007/BF02656802
  6. J. T. Yeom, I. S. Kim, N. K. Park, 1997, Assemssment of Grain Size Distribution in Hot Forged Alloy 718, J. Kor. Inst. Met. Mater., Vol. 35, No. 10, pp. 1424-1433.
  7. J. T. Yeom, D. H. Kim, Y. S. Na, N. K. Park, 2001, Characterization of Hot Deformation Behavior of Ti-6Al-4V Alloy, Trans. Mater. Process., Vol. 10, No. 4, pp. 347-354.
  8. B. H. Lee, N. S. Reddy, J. T. Yeom, C. S. Lee, 2007, Flow Softening Behavior during High Temperature Deformation of AZ31 Mg Alloy, J. Mater. Process. Technol., Vol. 187-188, pp. 766-769. https://doi.org/10.1016/j.jmatprotec.2006.11.053
  9. G. Shen, S. L. Semiatin, R. Shivpuri, 1995, Modeling Microstructural Development during the Forging of Waspaloy, Metall. Mater. Trans. A, Vol. 26A, No. 7, pp. 1795-1803. https://doi.org/10.1007/BF02670767
  10. J. T. Yeom, N. K. Park, 1997, Assessment of Grain Size Distribution in a Hammer Forged Alloy 718 Disk, Trans. Mater. Process., Vol. 6, No. 3, pp. 250-256.
  11. H. J. McQueen, N. D. Ryan, 1989, Dynamic Recovery, Strain Hardening and Flow Stress in Hot Working of 316 Steel, Czech. J. Phys., Vol. 39, No. 4, pp. 458-465. https://doi.org/10.1007/BF01597803
  12. C. M. Sellars, J. A. Whiteman, 1979, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., Vol. 13, No. 3-4, pp.187-194. https://doi.org/10.1016/0036-9748(79)90290-4