• Title/Summary/Keyword: Grain temperature

Search Result 2,931, Processing Time 0.026 seconds

Characteristics of CdS thin film depending on annealing temperature (열처리온도에 따른 CdS박막 특성)

  • 김성구;박계춘;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Polycrystalline CdS thin films were deposited by using EBE method and its crystal structure, surface morphology, electrical and optical properties as a function of annealing temperature were investigated. It was found that optimum growth conditions were substrate temperature annealing temperature 300[.deg. C]. The films were hexagonal structure preferred(002) plane and maximum grain size was 421[.angs.]. As the results, resistivity and optical transmittance of CdS thin films were $8.3{\times}{10^3}$[.ohm.cm] and 89[%] respectively.

  • PDF

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan;Choi, Eui-Seok;Hayakawa, Motozo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.718-721
    • /
    • 2005
  • The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

Annealing Effects on Electron Transport properties of Nanostructured Thin Film (Annealing에 의한 나노구조 박막의 전기적 특성 연구)

  • Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.98-101
    • /
    • 2006
  • Electron transport properties of nanostructured Pb thin film, consisting of grains, have been studied. Nanostructured thin films were fabricated on a substrate held at low temperature and their thicknesses were less than 10nm. While temperature of the film increased from 1.3 K to room temperature, the change in normal state sheet resistance has been measured. As the annealing temperature varies, the normal state sheet resistance shows a non-monotonic and irreversible change. Such behavior can be understood with the Pb grain growth due to annealing of the film.

Combination of MCA and SHS for Material Synthesis

  • Soh, Dea-Wha;N., Korobova
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.1-8
    • /
    • 2007
  • The combination of mechano-chemical activation (MCA)and Self-propagating High-temperature Synthesis (SHS) has widened the technical possibilities for both methods. For YBCO systems the investigation showed that a short-term MCA of initial powders before SHS leads to single-phase and ultra-fine products. A new technique for preparation ultra-fine high-temperature superconductors (HTS) of YBCO composition with a grain size d <1m is developed using combination of MCA and SHS. The specific feature of the technique is formation of the $YBa_2Cu_3O_7-$ crystalline lattice directly from an X-ray amorphous state arising as a result of mechanical activation of the original oxide mixture. The technique allows the stage of formation of any intermediate reaction products to be ruled out. X-ray and magnetic studies of ultra-fine high temperature superconductors are carried out. Dimension effects associated with the microstructure peculiarities are revealed. A considerable enhancement of inter-grain critical currents is found to take place in the ultra-fine samples.

High Temperature Erosion Properties of Silicon Nitride Fabricated by GPS and HP Method (GPS와 HP법으로 제조된 질화규소의 고온 Erosion 특성)

  • 최현주;안정욱;임대순;박동수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.304-309
    • /
    • 2000
  • Si$_3$N$_4$-6wt%Y$_2$O$_3$-lwt%Al$_2$O$_3$was prepared by hot pressed and gas pressure sintering to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens to study the high temperature erosion properties. A gas blast type erosion tester was used In examine erosion behavior of the specimens up to 700$^{\circ}C$. In case of GPS silicon nitride, the erosion rate increases up to 500$^{\circ}C$ and decreases over 500$^{\circ}C$. Maximum erosion rate was observed at 300$^{\circ}C$ for HP silicon nitride. The principal factors affecting the high temperature erosive wear of brittle materials are largely dependent on high temperature properties of grain boundaries.

  • PDF

Formation of Ultrafine Grain and Recrystallization in 1050 Al Alloy Rolled at Cryogenic Temperature (극저온 압연한 Al 1050의 결정립 미세화 및 재결정 거동)

  • 이영범;송형락;남원종
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • The deformation and annealing behaviors of a 1050 Al alloy deformed at cryogenic temperature were investigated, focusing on the evolution of microstructures and mechanical properties. Especially, the effects of annealing temperature, $150~300^{\circ}C$, on microstructures and mechanical properties of the sheets received reduction of 88% at cryogenic temperature were investigated. The significant change in mechanical properties with the annealing temperatures of $200~300^{\circ}C$ would be attributed to the variations in the volume fraction of recrystallized grains and coarse equiaxed grains.

Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization (미량원소첨가강의 석출 및 재결정에 의한 제어변형)

  • 조상현;김성일;유연철
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics

  • Nahm, Choon-W.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.84-90
    • /
    • 2019
  • The varistor properties and stability against dc-accelerated stress of $V_2O_5-Mn_3O_4-Co_3O_4-Dy_2O_3-Nb_2O_5-Bi_2O_3$ (VMCDNB)-doped zinc oxide ceramics sintered at $850-925^{\circ}C$ were investigated. Increasing the sintering temperature increased the average grain size from 4.6 to 8.7 mm and decreased the density of the sintered pellet density from 5.54 to $5.42g/cm^3$. The breakdown field decreased from 5919 to 1465 V/cm because of the increase in the average grain size. Zinc oxide ceramics sintered at $875^{\circ}C$ showed the highest nonlinear coefficient (43.6) and the highest potential barrier height (0.96 eV). Zinc oxide ceramics sintered at $850^{\circ}C$ showed the highest stability: the variation rate of the breakdown field was -2.0% and the variation rate of the nonlinear coefficient was -23.3%, after application of the specified stress (applied voltage/temperature/time).

Effect of Meteorological Condition during Ripening on the Grain Shattering of Rice Plant (등숙기 기상조건이 벼알의 탈립성에 미치는 영향)

  • J. C. Shin;Y. W. Kwon;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.229-234
    • /
    • 1982
  • Environmental factors are known in general to influence much on the development of abscission layer and thereby on shedding of plant parts. The present study was carried out to determine the effect of meterological condition during ripening on the grain shatterability of rice plants at harvest. Different meteorological conditions were obtained by shifting transplanting timing of 40 days old rice seedlings 4 times with a 15 days-interval. Grain shatterability was measured as tensile strength of rice grains: it varied within a range of 214g. to 251g. in a practically non-shattering Japonica variety'Jinheung' and l27.5g. to 204g. in an easy shattering Indica \times Japonica progeny variety'Taeback'. In view of field loss of rice, the variation in tensile strength with time of transplanting and harvest did not matter in Jinheung, but was an important factor in Taeback. In Taeback the tensile strength was significantly correlated positively with mean, maximum and minimum air temperature and relative humidity during a certain period of grain ripening, especially during 30 days period before harvest, but diurnal range of air temperature showed a significant, negative correlation with it. The tensile strength seemed to be more closely related with min. air temperature than max. air temperature, and it was not significantly correlated with radiation amount during any period of pre-harvest. Meteorological effect on grain shatterability may vary with variety, but temperature regime during ripening appears to play major role among the meteorological factors in easy shattering and more thermophilic Indica \times Japonica varieties: lower the temperature, greater the shatterability.

  • PDF

Studies on the Growth and Nutrient Uptake of Flag Leaf and Chaff of Rice Plant in Cold Injury Location I. Difference of Some Inorganic Elements of Grain Chaff Having Different Rice Variety and Elevation (냉해지대의 수도생육과 임, 불임 인각의 양분흡수에 관한 연구 제1보 지대별 수도품종에 따른 인각의 무기성분조성차)

  • Kim, Y.J.;Choi, S.I.;Ra, J.S.;Lee, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.198-205
    • /
    • 1982
  • In 1980, rice was considerably damaged by abnormal low temperature. In this paper, to determine the effect of low temperature on the growth and nutrition of rice, the experiment were carried out: varietal response to low temperature in the region with different elevations. Regional differences of heading response to low temperature were observed among varieties. The difference of days between regions were bigger in tongil lines than Japonica lines. Especially, Milyang 42 and Hangangchalbeo might belong the cold suceptible group, since the varieties were severely delayed their heading in the high mountainous region as comparred to plain region. The delay of heading with low temperature was brought out grain sterility, and fertility and ripening ratio is influenced cold tolerance and elevations, and it's decreased yield. Varieties with higher grain sterility by low temperature have higher total nitrogen content, but tended to have lower potassium and phosphate contents in the flag leaf. High content of total nitrogen, low contents of potassium and silicate were observed in the sterilized grain chaff an the opposite result were noted in the ferilized grain chaff at the ripening stage. The results reveal that the balance of these mineral element may play an important role in ripening and possibly cold tolerance.

  • PDF