• Title/Summary/Keyword: Grain Structure

Search Result 1,246, Processing Time 0.03 seconds

A Study on the Block Shear Strength according to the Layer Composition of and Adhesive Type of Ply-Lam CLT (Ply-Lam CLT의 층재 구성 및 접착제 종류에 따른 블록전단강도에 관한 연구)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.791-806
    • /
    • 2020
  • In this study, a block shear strength test was conducted to compare and analyze the strength and failure mode on the glued laminated timber, CLT, and Ply-lam CLT, which are mainly used for the construction of wood construction as engineering wood. Through this, the Ply-lam CLT manufacturing conditions for optimum production, such as the type of lamina, plywood, adhesive, and layer composition, were investigated. The results are as follow. Through block shear strength test, it showed high strength in the order of glued laminated timber, Ply-lam CLT and CLT. In particular, the shear strength of Ply-lam CLT, which is made of a composite structure of larch plywood and larch lamina, passed 7.1 N/㎟, which is a Korean industrial standards for block shear strength of structural glued laminated timber. In addition, in this study, there was no different in shear strength according to the adhesive type used for glulam, CLT, and Ply-lam CLT adhesion. However, in the case of Ply-lam CLT, the difference in shear strength of Ply-lam CLT was shown according to the type of lamina and plywood. The results showed high strength in the order of Larix kaempferi > Mixed light hardwood ≒ Pinus densiflora, sieb, et, Zucc plywood. The optimal configuration of Ply-lam CLT is when larch plywood and larch lamina are used, and it is decided that the adhesive can be used by selecting PRF and PUR according to the application. The results of block shear strength failure mode by type of wood based materials were analyzed. The failure mode showed shear parallel-to-grain for glulam, rolling shear for CLT, and shear parallel-to-grain and rolling for ply-lam CLT. This is closely related to shear strength results and is decided to indicate higher shear strength in Ply-lam CLT than in CLT due to rolling shear.

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

Cropping Systems for Vegetable Peanut and Environmental Effect of Residue Incorporation in Soil (풋땅콩 작부체계와 수확 후 잔존 유기물의 친환경적 효과)

  • 김정태;배석복;박향미;윤을수;김민태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.452-459
    • /
    • 2003
  • A new demand for vegetable peanut (Arachis hypogaea L.) in Korea has increased farmers interest in growing vegetable peanut. Compared to grain peanut production, vegetable peanut production enables the growth period to be shortened by 20 or 30 days and farmers to adopt various cropping systems and to return crop residues in the soil. With the purpose of establishing desirable cropping systems for sustainable vegetable peanut production, three field experiments were conducted from 2000 to 2001 at Milyang, the southeastern part of Korea. Main focuses were given into the effect of cropping systems for vegetable peanut production on each crop's yield and soil sustainability. The cropping systems investigated were single vegetable peanut, peanut-radish-green barley, peanut-barley, and peanut-garlic cropping system, with or without crop residue incorporation in the soil. Among the cropping systems investigated for sustainable vegetable peanut production, peanut-only and peanut-radish-green barley cropping systems showed vulnerable to diseases and lodging while peanut-barley and peanut-garlic cropping systems showed higher stability in response to diseases and lodging, consequently leading to higher yield potential of vegetable peanut production. In the peanut-barley cropping system, both barley and peanut residues returned to the soil played an important role in soil improvement as well as in significantly increased grain yield of peanut and barley. A particular notice was taken to the pronounced increase in Trichoderma population and the amount of nitrogen mineralization induced by the returned barley residue. Soil structure, compactness, pH, and fertility were positively influenced by the returned crop residues, which apparently increased sustainability in vegetable peanut production systems.

Electrochemical characterization of LiCoO2 thin film by sol-gel process for annealing temperature and time (졸-겔법에 의해 합성한 리튬 코발트 산화물의 열처리 온도와 시간에 따른 전기 화학적 특성)

  • Roh, Tae-Ho;Yon, Seog-Joo;Ko, Tae-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • $LiCoO_2$ thin film have received attention as cathodes of thin-film microbatteries. In this study, $LiCoO_2$ thin films were synthesized on Au substrates by sol-gel spin coating method and electrochemical properties were investigated under annealing temperature and time. The phycochemical properties of $LiCoO_2$ thin film were investigated by X-ray diffraction, scaning electron microscopy and atomic force microscopy. The electrochemical properties were characterized using galvanostatic charging/discharging cycling tests. From X-ray diffraction, as-grown films annealed at $550^{\circ}C$ and $750^{\circ}C$ are presumed to be spinel structure and a single phase of the layered-rock-salt, respectively. The RMS roughness and grain size of the films which annealed at $750^{\circ}C$ has similar values for annealing time 10 and 30 min, while for annealing time 120 min surface roughness, grain size increase and pore appearance were observed. The first discharge capacity of $LiCoO_2$ thin films annealed at $750^{\circ}C$ for 10, 30 and 120 min is about 54.5, 56.8 and $51.87{\mu}Ah/cm^2{\mu}m$, respectively. Corresponding capacity retention at 50th cycle is 97.25, 76.69, 77.19%.

Microwave Detector Using $YBa_2Cu_3O_{7-x}$ Grain Boundary Junction ($YBa_2Cu_3O_{7-x}$ 결정입계 접합을 이용한 마이크로파 감지소자)

  • Sin, Jung-Sik;Jo, Chang-Hyeon;Hwang, Du-Seop;Kim, Yeong-Geun;Wi, Dang-Mun;Cheon, Seong-Sun;Sin, U-Seok;Bae, Seong-Jun;Hong, Seung-Beom
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.681-686
    • /
    • 1994
  • Microwave Detector Using $YBa_{2}Cu_{3}O_{7-x}$, Grain Boundary Junction $YBa_{2}Cu_{3}O_{7-x}$ superconductor thin films were deposited on $LaAIO_{3}$ (100) single crystal substrates using a metal organic chemical vapor deposition (MOCVD) method. These films showed the critical temperature of about 9OK and critical current density of over $10^5/A \textrm{cm}^2$at 77K. These films showed granular structure with 0.5~1.5$\mu \textrm{m}$ grains. Bridge-type junctions, 6$\mu \textrm{m}$ in width and 6pm in length, were fabricated using the photolithography and the Ar ion milling techniques. Current-voltage (I-V) characteristics of these junctions with the microwave irradiation at 77K were studied. The critical current densities decreased as the irradiated microwave power increased. When microwaves were irradiated on the bridge at 77K. the I-V charateristics showed constant voltage stcp(Shapiro steps) at $\Delta$=nho/2e.

  • PDF

Investigation on PTCR Characteristics of (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) Ceramics by Modified Synthesis Process (수정합성공정에 의한 무연 (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) 세라믹의 PTCR 특성 연구)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.929-935
    • /
    • 2010
  • $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.01{\leq}x{\leq}0.10$) ceramics were fabricated with muffled sintering by a modified synthesis process. Their positive temperature coefficient of resistivity (PTCR) characteristics were investigated systematically. All specimen showed a perovskite structure with a tetragonal symmetry. Both the lattice parameter of a and c axes were slightly decreased with increasing $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) content. Grain growth was achieved when the incorporated BNT was increased to 6 mol% and the inhibition of grain growth is considered to be due to the appearance of Ba vacancy ($V^{"}_{Ba}$) in the $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.08{\leq}x$). With 4 mol% BNT addition, room temperature resistivity decreased to $48 \Omega{\cdot}cm$ and a resistivity jump ($\rho_{max}/\rho_{min}$) was as high as $1.1{\times}10^4$, respectively. Curie temperature was also increased to $171^{\circ}C$ with increasing BNT content.

Magnetic Properties of Magnetites at Low Temperatures (자철석의 저온 자화특성)

  • Hong, Hoa-Bin;Yu, Yong-Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Magnetic properties at low-temperatures can diagnose the presence of certain magnetic minerals in rocks. At the Verwey transition temperature ($T_v$, ~105~120 K), magnetite transforms from monoclinic to cubic structure as the temperature increases. At the isotropic point ($T_i$, ~135 K), magnetocrystalline anisotropic constant of magnetite passes through zero (from negative to positive) as the temperature decreases so that its optimal remanence acquisition axis changes from [111] to [001]. A sharp remanence drop was observed at $T_v$ during warming of LTSIRM (low-temperature saturation isothermal remanent magnetization). For cooling of RTSIRM (room-temperature saturation isothermal remanent magnetization), the remanence decreased on passing $T_i$ and $T_v$. On warming of RTSIRM, remanence recovery becomes more prominent as the average grain size of magnetite increases. In summary, the SIRM memory decreases with increasing grain size of magnetite. A similar, but rather gradual, remanence transition occurs for natural samples due to contribution of cations other than Fe. As a non-destructive tool, low-temperature magnetic behavior is sensitive to unravel the magnetic remanence carriers in terrestrial rocks or meteorites.

Effect of Stuffing of TiN on the Diffusion Barrier Property(I) : Al/TiN/Si Structure (TiN의 충진처리가 확산방지막 특성에 미치는 영향(I) : Al/TiN/Si 구조)

  • Park, Gi-Cheol;Kim, Gi-Beom
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.87-95
    • /
    • 1995
  • The effect of stuffing of TiN on the diffusion barrier property between A1 and Si was investigated. The stuffing of TiN was performed by annealing in a Nz ambient at $450^{\circ}C$ for 30min. By TEM analysis, it is identified that there are solid-free or open spaces of a b u t 10-20$\AA$ between the grains of asdeposited TiN. In the case of stuffed TiN, the width of solid-free or open spaces has been reduced to about 10$\AA$ or below. The combination of RBS and AES analyses showed that the asdeposited TiN had about 7at.% of oxygen, and that the stuffed TiN had about 10-15at.% of oxygen. The diffusion barrier test result shows that after annealing at $650^{\circ}C$ for lhour, the asdeposited TiN fails due to the formation of A1 spikes and Si pits in the Si substrate. However, in the case of stuffed TiN, there is no indication of Al spikes and Si pits at the same annealing condition. Thus, it is concluded that this stuffing of TiN significantly improves the diffusion barrier property of TiN between A1 and Si. It is considered that the stuffing effect results from the reduced diffusion through grain boundaries due to the reduced spacing of grain boundaries.

  • PDF

Analysis of Scale Sensitivity of Landscape Indices for the Assessment of Urban Green Areas (도시녹지 평가를 위한 경관지수의 스케일 민감성 분석)

  • Lee, In-Sung;Yoon, Eun-Joo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • Landscape indices are effective tools to explain the spatial structure and patterns of ecological landscape including area/density, shape, core area, isolation/proximity, contagion/interspersion, and connectivity. More than 100 indices have been developed and an increasing amount of research explains changes in urban spaces using the indices. However, landscape indices have a high level of sensitivity to the scale of analysis - grain size and extent. If the scale sensitivity of indices is not considered, the research may produce inaccurate results. This study examines the scale sensitivity of landscape indices to find relatively stable indices in the complex geographical features of Korea. The scale sensitivity was analyzed using 20 categories of grain size and 41 categories of extent change. Landsat TM and ETM+ images of five years - 1985, 1991, 1996, 2000 and 2003 - were used, and 54 class level indices mounted on the FRAGSTATS program were examined. The results are as follows: First, according to the analysis of the scale sensitivity, 19 out of 54 class level indices were found to be stable to scale change. Second, the scale sensitivity was closely related to the green area ratio, and the typical threshold of change was $40{\sim}50%$. Third, among the 16 indices which were frequently used in the research in Korea, only 6 indices were relatively stable to the scale change. These results can be an effective basis for the selection of indices in the landscape ecology research in Korea.

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF