• Title/Summary/Keyword: Grain Element

Search Result 320, Processing Time 0.024 seconds

Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature (나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석)

  • Kim, Hong-Gee;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Boundary Elements Heat Transfer Model of Temperature Distribution in Grain Storage Bins

  • T.Abe;C.E.Ofoche;Y.Hikida;Han, D.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.922-931
    • /
    • 1993
  • Boundary element method was used to solve heat conduction problem for predicting temperature distribution in grain storage bin. Temperature of grain in storage is one of the three main abiotic factors, besides the intergranular gas composition and the grain moisture content, that determine the keeping quality and control measures used to protect grain from insects and damaging microflora. Collecting the temperature data at various points in the storage bins at different time of the day over a period of time is one way of finding the temperature distribution, this method requires a lot of time, cost and labour and less efficient. However data so collected serve useful purpose of being used to validate predicted temperature distribution using mathematical models. Mathematical models based on physical principles can potentially predict with accuracy the temperature distribution in a grain storage bin. Using the boundary element model the effect of bin wall material, ambient emperature, bin size etc. on temperature distribution can be studied. A knowledge of temperature distribution in stored grain not only helps in identifying active deterioration , but also gives an indication of potential for detection.

  • PDF

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials (나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링)

  • 윤승채;서민홍;김형섭
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.174-179
    • /
    • 2004
  • The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

Design of Rolling Path Schedule for Refinement of Austenite Grain (오스테나이트 결정립 미세화를 위한 후판 압연 패스 스케줄의 설계)

  • Hong, Chang-Pyo;Park, Jong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1844-1853
    • /
    • 2001
  • In the present investigation, it was attempted to design the rolling pass schedule fur a clean steel of 0.1C-1.5Mn-0.25Si with the objective of the austenite grain refinement. As the method of approach, a coupled mathematical modeling technique was proposed which consists of a recrystallization model and a flow stress modes. The validity of the coupled model was examined through comparison with results of continuous and discontinuous compression tests at various temperatures, strains and strain rates. The coupled model was incorporated with the finite element method to set up a systematic design methodology far the rolling path schedule for austenite grain refinement. Two path schedules were obtained and discussed in the paper with regard to rolling path time, average grain size, grain size deviation in thickness, etc.

Prediction of Recrystallization Behaviors in Hot Forging by the Finite Element Method (열간단조공정중 강의 재결정거동 유한요소해석)

  • 곽우진;이경종;권오준;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.305-319
    • /
    • 1996
  • In this paper a finite element based system is presented for the prediction of the distributions of the recrystallized grain sizes in the workpiece in hot forging. The system adopts a fully coupled finite element thermo-mechanical model for predicting plastic deformation and heat transfer occurring in the workpiece and employs existing metallurgical models relating the recrystalliza-tion behavior with the thermo-mechanical variables such as temperatures strain and strain rate. The system is applied to upsetting of cylindrical preform. The predicted grain sizes are compared with the measurements. It is further applied to forging of a complex-shaped product.

  • PDF

Prediction model for prior austenite grain size in low-alloy steel weld HAZ (용접열영향부 호스테나이트 결정립 크기 예측 모델링)

  • 엄상호;문준오;이창희;윤지현;이봉상
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.43-45
    • /
    • 2003
  • The empirical model for predicting the prior austenite grain size in low-alloy steel weld HAZ was developed through examining the effect of alloying element. The test alloys were made by vacuum induction melting. Grain growth behaviors were observed and analyzed by isothermal grain growth test and subsequent metallography. As a result, it was found that the grain growth might be controlled by grain boundary diffusion and the empirical model for grain growth was presented.

  • PDF

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

Effect of Niobium on Corrosion Fatigue Properties of High Strength Steel

  • Cho, Young-Joo;Cho, Sang-Won;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.81-89
    • /
    • 2018
  • In this study, the effect of Nb alloying element on the corrosion fatigue properties of high strength steel is investigated by conducting fatigue experiments under corrosive condition and hydrogen induced condition, potentiodynamic polarization test, tensile test and surface analyses. Nb element is added to enhance the mechanical property of medium carbon steel. This element forms MX-type phases such as carbides and nitrides which are playing an important role in the grain refinement. The grain refinement is one of the effective way to improve mechanical property because both tensile strength and toughness can be improved at the same time. However, MX-type phase precipitates can be a susceptible site to localized corrosion in corrosive environment due to the potential difference between matrix and precipitate. The obtained results showed that Nb-added steel improved corrosion fatigue property by grain refinement. However, it is degraded for hydrogen-induced fatigue property due to Nb, Ti-inclusions acting as a stronger trap.

A Finite Element Analysis for Densification Behavior and Grain Growth of Tool Dteel Powder Compacts (공구강 분말 성형체의 치밀화 거동과 결정립 성장에 관한 유한 요소 해석)

  • 전윤철
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.90-99
    • /
    • 1997
  • Densification behavior and grain growth of tool steel powder compacts during pressureless sintering, sinter forging, and hot isostatic pressing were investigated. Experimental data were compared with results of finite element calculations by using the constitutive model of Abouaf and co-workers and that of McMeeking and co-workers. Densification and deformation of tool steel powder compacts were studied by implementing power-law creep, diffusional creep, and grain growth into the finite element analysis. The shape change of a powder compact in the container during hot isostatic pressing was also studied. The theoretical models did not agree well with experimental data in sinter forging, however, agreed well with experimental data in hot isostatic pressing.

  • PDF