• Title/Summary/Keyword: Grain Boundary Element Finite Element Method

Search Result 13, Processing Time 0.016 seconds

Experimental Study on the Deformation and Failure Behavior of Tono Granite (토노(Tono) 화강암의 변형 및 파괴거동에 관한 실험적 연구)

  • Choi, Jung-Hae;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • The nature of surface deformation of Tono granite was investigated using a confocal laser scanning microscope (CLSM) under water-saturated stress relaxation conditions. A new apparatus was developed for this experiment, enabling continuous measurements of stress-strain and simultaneous observations of surface deformation by CLSM. The amounts of grain contact deformation and intra-granular surface deformation were calculated using a finite element method. The results reveal that intense grain contact deformation and intra-granular surface deformation occurred during the period of stress relaxation, and that the intensity of this deformation increased with increasing applied stress. Finite element method (FEM) results show that the strain of grain boundary was greater than strain of inter-granular surface. Contour maps of these local strains were compiled for individual grains and their boundaries, revealing intense deformation at the boundaries between biotite and quartz under compressional stress. This result was a consequence of the mechano-chemical effect of biotite and quartz minerals. Biotite in granite has a layered structure of iron-magnesium-aluminum silicate sheets that are weakly bonded together by layers of potassium ions. In contrast, quartz occurs as stable spherical grains.

Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide (Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

A Study on Fatigue Crack Retardation and Retardation Mechanism in Variable Loading (변동하중하에서의 피로크랙 지연현상과 지연기구에 관한 연구 - 균열성장 지연현상에 미치는 균열 가지의 영향 -)

  • Song, S.H.;Kwon, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.83-89
    • /
    • 1997
  • In order to study on fatigue crack retardation and retardation mechanism in variable loading, the effects of crack tip branching in fatigue crack growth retardation were examined. The characteristics of crack tip banching behavior was considered to micro structure. It was examined that the variation of crack tip branching angle. Crack tip branching was observed along the grain boundary of ferrite and pearlite structure. It was found that the abanching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving force to branching angle was examined. The effective crack driving force ( $K_{\eff}$ ) decreased as the braching angle increases. The rate of decrease was 33% for the kinked type and 29% for the forked one. It was confirmed that the effect of crack tip branching is a very important factor in fatigue crack growth retardation. Therefore, crack branching effect should be considered building the hypoth- etical model to predict crack growth retardation.

  • PDF