• Title/Summary/Keyword: Gradients

Search Result 1,176, Processing Time 0.033 seconds

Clinicopathologic Implication of New AJCC 8th Staging Classification in the Stomach Cancer (위암에서 새로운 제8판 AJCC 병기 분류의 임상적, 조직 병리학적 시사점)

  • Kim, Sung Eun
    • Journal of Digestive Cancer Research
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • Stomach cancer is the fifth most common malignancy in the world. The incidence of stomach cancer is declining worldwide, however, gastric cancer still remains the third most common cause of cancer death. The tumor, node, and metastasis (TNM) staging system has been frequently used as a method for cancer staging system and the most important reference in cancer treatment. In 2016, the classification of gastric cancer TNM staging was revised in the 8th American Joint Committee on Cancer (AJCC) edition. There are several modifications in stomach cancer staging in this edition compared to the 7th edition. First, the anatomical boundary between esophagus and stomach has been revised, therefore the definition of stomach cancer and esophageal cancer has refined. Second, N3 is separated into N3a and N3b in pathological classification. Patients with N3a and N3b revealed distinct prognosis in stomach cancer, and these results brought changes in pathological staging. Several large retrospective studies were conducted to compare staging between the 7th and 8th AJCC editions including prognostic value, stage grouping homogeneity, discriminatory ability, and monotonicity of gradients globally. The main objective of this review is to evaluate the clinical and pathological implications of AJCC 8th staging classification in the stomach cancer.

Study on the cantilever ratio optimization of high-temperature molten salt pump for molten salt reactor based on structural integrity

  • Xing-Chao Shen;Yuan Fu;Jian-Yu Zhang;Jin Yang;Zhi-Jun Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3730-3739
    • /
    • 2024
  • The high-temperature molten salt pump is the core equipment in the small modular molten salt reactor with media temperatures up to 700 ℃. The cantilever ratio of the molten salt pump is usually large. Excessively large cantilever ratios cause increased deformations and rotational amplitudes at the impeller, thus affecting the operational stability of the main pump; small cantilever ratios cause heavy temperature gradients, thus affecting the structural integrity evaluation. This paper used numerical simulation methods to calculate and analyze the temperature field, stress, and structural integrity, optimized the pump shaft cantilever length of the original scheme based on structural integrity using the dichotomy method, and analyzed the rotor dynamics of the optimization results. The results of this study show that the thermal expansion load caused by the temperature difference has a significant mechanical effect on the structure; the first-order critical speed of the rotor system of the optimized schemes has been improved, and the amplitude of the unbalanced response has been significantly reduced, which not only improves the operational stability of the rotor, also contributes to the compact design of the main pump of a small modular molten salt reactor.

Doxorubicin·Hydrochloride/Cisplatin-Loaded Hydrogel/Nanosized (2-Hydroxypropyl)-Beta-Cyclodextrin Local Drug-Delivery System for Osteosarcoma Treatment In Vivo

  • Sun Jung Yoon;Young Jae Moon;Heung Jae Chun;Dae Hyeok Yang
    • Nanomaterials
    • /
    • v.9 no.12
    • /
    • pp.1652-1663
    • /
    • 2019
  • Osteosarcoma (OSA) is a difficult cancer to treat due to its tendency for relapse and metastasis; advanced methods are therefore required for OSA treatment. In this study, we prepared a local drug-delivery system for OSA treatment based on doxorubicin·hydrochloride (DOX·HCl)/cisplatin (CP)-loaded visible light-cured glycol chitosan (GC) hydrogel/(2-hydroxypropyl)-beta-cyclodextrin (GDHCP), and compared its therapeutic efficiency with that of DOX·HCl- and CP-loaded GC hydrogels (GD and GHCP). Because of diffusion driven by concentration gradients in the swollen matrix, the three hydrogels showed sustained releases of DOX·HCl and CP over 7 days, along with initial 3-h bursts. Results of in vitro cell viability and in vivo animal testing revealed that GDHCP had a stronger anticancer effect than GD and GHCP even though there were no significant differences. Body weight measurement and histological evaluations demonstrated that the drug-loaded GC hydrogels had biocompatibility without cardiotoxicity or nephrotoxicity. These results suggested that GDHCP could be a good platform as a local drug-delivery system for clinical use in OSA treatment.

NEURAL OPERATOR BASED REYNOLDS AVERAGED TURBULENCE MODELLING

  • SEUNGTAE PARK;JUNSEUNG RYU;HYUNGJU HWANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.3
    • /
    • pp.108-119
    • /
    • 2024
  • The Reynolds-averaged Navier-Stokes (RANS) simulations are commonly used in industrial applications due to their computational efficiency. However, the linear eddy viscosity model (LEVM) used in RANS often fails to accurately capture the anisotropy of Reynolds stress in complex flow conditions. To enhance RANS predictive accuracy, data-driven closure models, such as Tensor Basis Neural Network (TBNN) and Tensor Basis Random Forest (TBRF), have been proposed. However existing models, including TBNN and TBRF, have limitations in capturing the nonlocal patterns of turbulence models, resulting in irregular and unsmooth predictions. Convolutional neural networks (CNNs) are considered as an alternative approach, but their reliance on discretization poses challenges when dealing with arbitrarily designed meshes in RANS simulations. In this study, we propose a nonlinear convolutional neural operator as the RANS closure model. Our model satisfies Galilean invariance, can learn nonlocal physics, and recovers high-resolution physics even when trained on undersampled grids. The model outperforms existing TBNN and TBRF models, successfully predicting smooth fields of Reynolds stress in flows with adverse pressure gradients, separations, and streamline curvature, where existing models struggle or fail to provide accurate predictions.

Surface geophysical surveys the northern part of the Yongdong basin (Cretaceous), Korea (영동분지(백악기) 북부 지역에 대한 지표물리탐사)

  • Kim, Ji-Su;Han, Soo-Hyung;Rhee, Cheol-U;Kim, Bok-Cheol;Ryang, U-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.329-336
    • /
    • 2002
  • Electrical resistivity dipole-dipole, seismic refraction, and seismic reflection methods were performed to delineate the boundaries the Yongdong basin(Cretaceous) in terms of physical properties and to ultimately identify the margin architectures of the faults or unconformities. Higer resistivities (approximately >2000 ohm-m) most likely originate from the basement of the basin, contrasting with the lower resistivities from infilled sedimentary rocks. Faults at the eastern margin and unconformities at the western boundary are characterized as high-slope($70^{\circ}$) and gentle-slope($30^{\circ}$) gradients in the resistivity sections, respectively Such features for the boundaries are also suggested by the lower values of seismic velocity and resistivity for the western margin.

  • PDF

A Numerical Study on a High-Temperature Air Combustion Burner for a Compact Fuel-Cell Reformer (연료전기용 컴팩트형 개질기의 고성능화를 위한 고온 공기 연소 기술의 적용에 관한 연구)

  • Lee, Kyoung-Ho;Kwon, Oh-Chae
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2005
  • A new burner configuration for a compact fuel-cell reformer with a high-temperature air combustion concept was numerically studied. The burner was designed for a 40 $Nm^3/hr$ hydrogen-generated reformer using natural gas-steam reforming method. In order to satisfy the primary requirements for designing a reformer burner (uniform distribution of temperature along the fuel processor walls and minimum heat losses from the reformer), the features of the present burner configuration included 1) a self-regenerative burner for an exhaust-gas-recirculation to apply for the high-temperature air combustion concept, and 2) an annular-type shield for protecting direct contact of flame with the processor walls. For the injection velocities of the recirculated gas of 0.6-2.4 m/s, the recirculated gas temperature of 1000 K, and the recirculated oxygen mole fraction of 4%, the temperature distributions along the processor walls were found uniform within 100 K variation. Thus, the present burner configuration satisfied the requirement for reducing temperature gradients along the processor walls, and consequently demonstrated that the high-temperature air combustion concept could be applied to the practical fuel reformers for use of fuel cells. The uniformity of temperature distribution is enhanced as the amount of the recirculated gas increases.

FRICTION UNITS FOR THE MOON

  • Drozdov, Yu.N.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.389-396
    • /
    • 2002
  • In XXI century it is necessary to expect the recommencement and development of activities on mastering the Moon. In the long term it is construction of manned lunar bases with industrial, astrophysical, procuring, repair equipment and services. Interplanetary flights from the Moon demand smaller power expenditures, than from the Earth, therefore it is favourable to use its surface for the construction of space-vehicle launching sites. Flights of devices in libration points in the system 'Earth - Moon' are considered. Experience of engineering system creation for the Moon displays the great complexity in provision of serviceability and reliability of friction units. Open friction units should operate under following conditions on the Moon: pressure of environment (vacuum) $p\;>10\;^{-10}$ Pa; wide range of temperature change $+150^{\circ}C\;...170^{\circ}C$; high evaporability of lubricants; influence of temperature gradients and warping of constructions; sublimation of elements of constructional materials; irradiation of different physical nature; effect of micrometeorites; reduced gravitation; influence of abrasive particles of lunar ground; requirements on minimization of size and weight characteristics of a construction (high tension); undesirability (impossibility) of application of liquid and plastic lubricants; vibration, shock, acoustic loadings during start and landings to the Earth; difficulties in repair-regenerative operations in conditions of the Moon etc. Adhesive interaction of conjugated surfaces is the principal reason of possible failures of rubbed units on the Moon. In the research of the Moon automatic interplanetary stations of 'Luna' (USSR), 'Surveyer', 'Apollo' (USA) series were used. Stations executed functions of flying, landing, artificial satellites of the Moon, moon-rovers and manned spacecrafts such as 'Apollo'. The experimental- theoretical researches carried out in the sixtieth years on tribology for conditions of the Moon appeared to be rather useful to engineering of an outer space exploration and the decision of complex problems for the friction units operating in extreme conditions on the Earth. For the creation of highly loaded friction units for the long service life on the Moon it is required not only to use accumulated experience and designed technologies, but also to carry out wide scientific research.

  • PDF

The Growth Response of Quercus dentata Sapling to the Environmental Gradients Treatment (환경구배처리에 따른 떡갈나무의 생육 반응)

  • Lee, Sang-Kyoung;You, Young-Han;Yi, Hoon-Bok
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.597-601
    • /
    • 2010
  • Quercus dentata (Thunb. ex Murray) is a major tree found in dry habitats such as limestone areas of Korea. In order to characterize the ecological traits of Q. dentata, we treated Q. dentata saplings under four gradient levels of major environment factors such as light, soil moisture and nutrients for 5 months in a glass house. We then measured and analyzed growth differences among them. Regarding light, aboveground, belowground and plant biomass were highest at a high gradient and lowest at a low one. The root/shoot ratio was highest at the highest light gradient. Regarding moisture, no measured items were significantly affected by the moisture gradient. Regarding nutrients, aboveground, belowground and plant biomass were the highest at a slightly high gradient and the lowest at a gradient lower or higher than this. The root/shoot ratio was not significantly affected by the nutrient gradient. From these results, it was shown that the growth of Q. dentata was more affected by light and nutrients in the environment than moisture.

Changes of the Electrocardiogram and Blood Picture of Frogs in Four Seasons (개구리 심전도(EKG) 및 혈액상의 계절에 따른 변화)

  • Rhee, Jung-Moo;Bae, Sung-Ho;Shin, Hyun-Chan;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.33-44
    • /
    • 1974
  • The electrocardiogram of frogs were obtained in winter (January), spring (April), summer (July) and autumn (September and November). Electrocardiograms were recorded applying electrodes to the atria, ventricle and apex of the heart by unipolar or bipolar leads. V wave was recorded prior to P wave, for the presence of the sinus venosus which controls the automaticity of the frog heart, in four seasons. Regardless of the leads or the position of the electrodes P wave was diphasic and wide. According to the rise of temperature the rate of heart beat was increased, and V-P and P-R interval were shortened. Two regression line between R-R interval and both V-P interval and P-R interval were drawn. These were calculated as V-P interval=1 0.276R-R $interva1+0.067{\pm}0.15$ (sec.) and P-R interval=0.179R-R $interva1+0.155{\pm}0.1$ (sec). From these calculation the larger gradient of V-P interval than P-R interval was suggestive that the heart rate is more dependent on the changes of V-P interval than that of P-R interval. Changes of the heart rate were also measured in four seasons and artificial temperatures. Two regression lines between the heart rate (H.H.) and both seasonal temperature (T) and artificial temperature, were drawn. These two lines were calculated as H.R.=20+3.71 (T-10) and H.R.=32+1.425 T respectively. From two gradients of the above equations it is considered that the changes of the heart rate in artificial temperature were milder than that in seasonal temperature. The number of RBC and WBC of frogs were measured in four seasons and a tendency of the changes was observed according to the seasonal variation.

  • PDF

Safety evaluation of agricultural reservoir embankment according to backside extension (후면 덧쌓기에 따른 농업용 저수지 제체의 안정성 평가)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.97-110
    • /
    • 2012
  • This study was carried out for safety evaluation, the practical application and improvement of design method of the agricultural reservoir embankment according to backside extension. Seepage analysis, slope stability analysis and finite element analysis were performed for steady state and transient conditions. Also, the pore water pressure, seepage quantity, safety factor and stress-strain behavior according to high water level and rapid drawdown were compared and analyzed. The pore water pressure at contact region between backside extension and old embankment was kept high after rapid drawdown. Therefore, backside extension is recommended that design method is required to be improved and reinforced more than the others raising embankment. The hydraulic gradients before and after backside extension showed high value at the base of the core, but they showed stable state at the upstream slope and downstream slope. The seepage quantity per 1 day and the leakage per 100 m for the steady state and transient conditions appeared to be safe against the piping. The safety factor of slope stability showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown. The safety factor was appeared high at the upstream slope before backside extension and downstream slope after extension. The excess pore water pressure for steady state and transient conditions showed negative(-) at the upstream slope, it was small at the downstream slope. The mean effective stress (p') showed high at the base of the core and to be wild distribution after the extension. The displacement after extension showed 0.02-0.06 m in the upstream slope, the maximum shear strain after extension was smaller than that before extension.