Proceedings of the Korean Society of Developmental Biology Conference
/
2003.10a
/
pp.133-133
/
2003
Recently, sperm has been used as a vector to carry exogenous genes for the production of transgenic animals. However, the success in cattle is low, due to deficiencies in oocyte activation and sperm decondensation caused by high disulphide bond (S=S) content in mature sperm. This study was carried out to develop an effective method for producing transgenic animals with round spermatids (RS). Two methods of embryo production - electric fusion (EC) or intracyto-plasmic injection (IC) and three activation treatments were compared. RS were isolated from bull testes by Percoll density gradients (20, 35, 40, 45 and 90%). Fusion between ooplast and RS was performed with a single DC electric pulse (1.0 KV/cm, 45 sec) in 0.28 M mannitol solution supplemented with 100 M CaCl2 and 100 M MgCl$_2$. (중략)
Kim, Bong-Mo;Kim, Yong-Min;Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
Annual Conference of KIPS
/
2011.04a
/
pp.374-375
/
2011
보행자 탐지를 위해 많은 알고리즘들이 제안되었고 그 중 HOG 알고리즘은 가장 좋은 성능을 보이는 알고리즘으로 알려져 있다. 하지만 HOG(Histogram of Oriented Gradients) 알고리즘은 연산량이 많아 계산 속도가 느려 실시간 시스템에 적용하기는 힘들다. 본 논문은 HOG 알고리즘으로 얻어진 특징 벡터를 이용해 보행자를 인식하는 방법의 속도 개선에 대하여 연구하였다. 기존 HOG 알고리즘에서 계산량이 많은 곳이 어느 부분인지 분석하고, 그 중 기울기와 방향을 계산하는 부분의 근사화를 통해 계산 속도를 높이는 방법을 제안한다.
본 논문에서는 주행 중 운전자의 운전작업 중 전방 주의집중 여부를 모니터링하는 연구 방안들을 조사하고 최신 연구 동향을 분석하였으며, 자율주행자동차에서 운전자의 주의집중이 필요한 상황들에 대해 사전에 안내하는 방안을 제시하고자 한다. 연구 동향을 조사한 결과 대부분의 방법은 시각 자료 기반과 생체신호 기반으로 진행하고 있다. 연구분석 결과를 바탕으로 두 가지 방법 중 본 연구에서는 시각 자료 기반 연구 방법에 초점을 맞추어, 자동차에 설치된 카메라를 통해 수집된 영상에서 운전자의 운전작업 주의 여부를 식별하는 방법들에 대해서 분석을 진행하였다. 주행 영상에서 HoG(histogram of oriented gradients) 특징과 딥러닝 학습을 통해 운전자의 주의집중 여부를 모니터링하는 방법이 효과적임을 제시한다. 본 연구조사를 통해 분석된 운전자 모니터링 방안들을 자율주행 자동차에 적용하기 위한 운전자 주의 태만 경고시스템에 적용이 가능함을 제시한다.
J. H. Widdicombe;S. J. Bastacky;D. X.Y. Wu;Lee, C. Y.
Proceedings of the Korean Society of Applied Pharmacology
/
1996.04a
/
pp.119-130
/
1996
We review the factors which regulate the depth and composition of the human airway surface liquid (ASL). These include secretion from airway submucosal glands, ion and fluid transport across the surface epithelium, goblet cell discharge, surface tension and transepithelial gradients in osmotic and hydrostatic pressure. We describe recent experiments in which we have used low temperature scanning electron microscopy of rapidly frozen specimens to detect changes in depth of ASL in response to submucosal gland stimulation. We also present preliminary data in which X-ray microanalysis of frozen specimens has been used to determine the elemental composition of ASL.
The recovery of reasonable depth information from different scenes is a popular topic in the field of computer vision. For generating depth maps with better details, we present an efficacious monocular depth prediction framework with coordinate attention and feature fusion. Specifically, the proposed framework contains attention, multi-scale and feature fusion modules. The attention module improves features based on coordinate attention to enhance the predicted effect, whereas the multi-scale module integrates useful low- and high-level contextual features with higher resolution. Moreover, we developed a feature fusion module to combine the heterogeneous features to generate high-quality depth outputs. We also designed a hybrid loss function that measures prediction errors from the perspective of depth and scale-invariant gradients, which contribute to preserving rich details. We conducted the experiments on public RGBD datasets, and the evaluation results show that the proposed scheme can considerably enhance the accuracy of depth prediction, achieving 0.051 for log10 and 0.992 for δ<1.253 on the NYUv2 dataset.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.393-393
/
2022
상수도관망의 압력은 물공급 서비스의 질을 나타내는 중요한 인자이다. 압력이 낮으면 물 사용성이 크게 저하되며, 이러한 이유로 보통의 수도사업자는 압력을 중요한 모니터링 변수로 고려하고 있다. 압력을 기반으로 여러 가지 변수를 계산할 수 있지만, 그 중에서도 압력경사(Pressure Head Gradient)는 수요량, 관경, 관의 파괴 등 독립변수 또는 독립요인의 변화에 따른 종속변수로서의 압력 민감도를 나타낸다. 압력경사의 계산은 매우 간단하면서도 활용도가 높다. 따라서, 다양한 종류의 압력경사를 계산하고, 상수도관망 설계, 운영, 관리 목적에 어떻게 사용할 것인가를 연구할 필요가 있다. 본 연구에서는 먼저 관의 상태, 관경, 절점수요량을 독립변수로 하고 이를 변화시켜 그 결과로의 압력종속변수를 계산, 압력경사를 결정하였다. 이를 기반으로, 히트맵을 구축하여 결과를 비교하였다. 그 후 각각의 압력경사에 대한 모듈을 구축하였으며, 개별 압력경사 모듈의 특징을 고려하여 활용방법을 수립하였다.
ViT(Vision Transformer)는 트랜스포머 구조에 이미지를 패치들로 나눠 한꺼번에 인풋으로 입력하는 모델이다. CNN 기반 모델보다 더 적은 훈련 계산량으로 다양한 이미지 인식 작업에서 SOTA(State-of-the-art) 성능을 보이면서 다양한 비전 작업에 ViT 를 적용하는 연구가 활발히 진행되고 있다. 하지만, ViT 모델도 AI 모델 훈련시에 생성된 그래디언트(Gradients)를 이용해 원래 사용된 훈련 데이터를 복원할 수 있는 모델 역전 공격(Model Inversion Attacks)에 안전하지 않음이 증명되고 있다. CNN 기반의 모델 역전 공격 및 방어 기법들은 많이 연구되어 왔지만, ViT 에 대한 관련 연구들은 이제 시작 단계이고, CNN 기반의 모델과 다른 특성이 있기에 공격 및 방어 기법도 새롭게 연구될 필요가 있다. 따라서, 본 연구는 ViT 모델에 특화된 모델 역전 공격 및 방어 기법들의 특징을 서술한다.
Explainable artificial intelligence is a method that explains how a complex model (e.g., a deep neural network) yields its output from a given input. Recently, graph-type data have been widely used in various fields, and diverse graph neural networks (GNNs) have been developed for graph-type data. However, methods to explain the behavior of GNNs have not been studied much, and only a limited understanding of GNNs is currently available. Therefore, in this paper, we propose an explanation method for node classification using graph convolutional networks (GCNs), which is a representative type of GNN. The proposed method finds out which features of each node have the greatest influence on the classification of that node using GCN. The proposed method identifies influential features by backtracking the layers of the GCN from the output layer to the input layer using the gradients. The experimental results on both synthetic and real datasets demonstrate that the proposed explanation method accurately identifies the features of each node that have the greatest influence on its classification.
S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
International Journal of Computer Science & Network Security
/
v.24
no.5
/
pp.129-134
/
2024
Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.
Kim, Jin-A;Choo, Yeon-Sik;Lee, In-Jung;Bae, Jeong-Jin;Kim, In-Sook;Choo, Bo-Hye;Song, Seung-Dal
The Korean Journal of Ecology
/
v.25
no.3
s.107
/
pp.171-177
/
2002
Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through ionic balances and osmoregulations under different environmental salt gradients. Plants were harvested in two weeks from treatments with salt gradients(0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, l/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated salts into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var cicla. The absorption of inorganic $Ca^{2+}$ ions was inhibited remarkably due to the excess uptake of $Na^+$ with increasing salinity. The $K^+$ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increases. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were $0.2{\sim}2.5{\mu}M/g$ plant water and $0.1{\sim}0.6{\mu}M/g$ plant water, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.