• Title/Summary/Keyword: Gradient force

Search Result 276, Processing Time 0.024 seconds

Development of Bond Strength Model for FRP-Plates Using Multi-layer Perceptron (다층 인식자 신경망 모형을 이용한 FRP 판의 부착강도 예측 모형 개발)

  • Kwak Kae-Hwan;Seok In-Soo;Hwang Hae-Sung;Sung Bai-Kyung;Jang Hwa-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1009-1014
    • /
    • 2006
  • Synthetic materials with excellent thermodynamic characteristics and the merit of anti-corrosion are frequently used in buildings and constructions for enforcement of bent in stead of steel plates. Among them, many practical studies have been conducted on bond strength because of increased bond strength of FRP plates. Previous investigators identified the bond strength of FRP plates through experiments with settlement of various variables to identify the bond strength. However, the experiments to identify the bond force are difficult to be conducted because they requires large expenses and long time for equipment arrangement, thus, are conducted with limitation. In this study, for bond experiment, optimum neural network model was developed with use of Back-propagation and Conjugate gradient technique of previous investigators. Learning was performed with use of the variables of previous investigators in developed neural network model so as to identify the bond strength of FRP plates. for verification of developed model, credibility and excellence was proven by comparing with the models of previous investigators.

  • PDF

The Static Pressure Distribution and Flow Characteristics Inside the High-Pressure Swirl Spray (고압 스월분무 내부의 압력분포 및 유동특성에 대한 연구)

  • Moon, Seok-Su;Abo-Serie, Essam;Choi, Jae-Joon;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The static pressure distribution and flow characteristics inside the high-pressure swirl spray were investigated by measuring the static pressure inside the spray and applying the computational fluid dynamics (CFD). The static pressure difference between inner and outer part of spray was measured at different axial locations and operating conditions using a piezo-resislive pressure transducer. To obtain the qualitative value of swirl motion at different operating conditions, the spray impact-pressure at the nozzle exit was measured using a piezo-electric pressure transducer, and the flow angle was measured using a microscopic imaging system. The flow characteristics inside the high pressure swirl spray was simulated by the 1-phase 3-dimensional CFD model. The effect of pressure alternations on spray development was discussed with macroscopic spray images and a mathematical liquid film model. The results showed that the static pressure drop is observed inside the swirl spray as a result of the dragged air motion and the centrifugal force of the air. The recirculation vortex inside the spray was also observed inside the swirl spray as a result of the adverse pressure gradient along the axial locations. The results of analytical liquid film model and macroscopic spray images showed that the static pressure structure is one of the main parameters affecting the swirl spray development.

  • PDF

A Study on Failure Analysis of Low Pressure Turbine Blade in Nuclear Plant using AFM (AFM을 이용한 발전소용 저압 터빈 블레이드의 파손해석에 관한 연구)

  • Hong, Soon-Hyeok;Choi, Woo-Sung;Moon, Sung-Jun;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.61-68
    • /
    • 2001
  • Turbine blade in nuclear plant is subject to cyclic bending fatigue by high steam pressure. Especially, fatigue fracture is caused by low stress below yielding stress. Photograph by SEM doesn't have striation but photograph by AFM has striation on the fatigue fractured surface of 12% Cr steel used in turbine blade. Surface roughness $R_q$ has the linear relation with respect to stress intensity factor range ΔK and is increased linearly according to load amplitude $\textit{\Delta}P$. In this study loading condition applied to turbine blade is predicted by the relation between the gradient of $R_q$ to $\textit{\Delta}K$ and load amplitude $\textit{\Delta}P$.

  • PDF

Identification of boundary migration during the wound healing through the visualization of cell migrations (세포 운동 가시화를 통한 상처 치유 과정 내 경계 이동의 규명)

  • Jeong, Hyuntae;Lee, Jaesung;Shin, Jennifer Hyunjong
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2020
  • The curvature of wound boundaries has been identified as a key modulator that determines a type of force responsible for cell migration. While several studies report how certain curvatures of the boundary correlate with the rate at which the wound closes, it remains unclear how these curvatures are spatiotemporally formed to regulate the healing process. We investigated the dynamic changes in the boundary curvatures by visualizing cell migration patterns. Locally, cells at the convex boundary continuously move forward with transmitting kinetic responses behind to the cells away from the boundary, and cells at the concave boundary exhibit dramatic contracting motion, like a purse-string, when they accumulate enough negative curvatures to gain the thrust toward the void. Globally, the dynamics of boundary geometries are controlled by the diffusive flow of cells driven by the density gradient between the wound area and the cell layer.

An Experimental Study on the Cylinder Wall Temperature Characteristics for Load Variations in a Gasoline Engine (가솔린엔진의 부하(負荷)에 따른 실린더 벽면 온도특성(溫度特性)에 관(關)한 연구(硏究))

  • Kwon, K.R.;Ko, J.K.;Hong, S.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 1999
  • The purpose of this study is to prevent the stick, scuffing, scratch between piston and cylinder, is to contribute the piston design such as piston profile, clearance by calculating reaction force by over-lap of piston skirt, as measuring the temperature distributions of cylinder wall. The experiment has been peformed to obtain data during actual engine operation. Temperature gradient in peripheral and axial distributions of cylinder wall according to torque and speed of engine were measured by use of an 800cc class gasoline engine. The results obtained are summarized as follows ; 1) The temperature of cylinder wall at TDC was about $50{\sim}75^{\circ}C$ higher than temperature of cooling water. 2) The rear side temperature of top dead center was $141^{\circ}C$(1/4 load) in axial distribution, whereas the rear side of midway position temperature was $98^{\circ}C$. 3) The temperature of cylinder wall increased in according to rising temperature of cooling water. 4) The thrust side temperature of cylinder wall was about $15^{\circ}C$ in all load test. 5) The rear side temperature of top dead center was $159^{\circ}C$ (1/2 load) in peripheral distribution, it was about $39^{\circ}C$ higher than thrust side temperature.

  • PDF

Crystal growth and characteristics of lysozyme crystals

  • Kojima, Kenichi
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.3-3
    • /
    • 2002
  • Many studies on crystal growth mechanisms of the hen egg-white lysozyme protein crystals have mainly performed by optical microscopy and atomic force microscopy (AFM). As results, two types of growth mechanisms, which are a two-dimensional nucleation mechanism and a spiral growth mechanism, were identified. However, there was no direct evidence of grown-in screw dislocations at the spiral sites. We first observed the screw dislocations in tetragonal lysozyme crystals using synchrotron X-ray topography. In addition, to confirm the characteristics of dislocations, we have observed some elastic constants in lysozyme crystals in terms of the sound velocity measurement by pulse echo methods. Tetragonal hen egg-white lysozyme crystals were grown by the concentration gradient method. The crystals were grown in test tubes, with an inner diameter of 8 ㎜ and 80 ㎜ in length, held vertically. The test tubes were kept at 23C for 2 weeks. The maximum size of crystals were 3×3×4 ㎟. The high quality crystals were examined by Laue topography with a water filter using synchrotron radiation. Figure is a X-ray topograph. Several straight screw dislocations were observed. We also determined Burgers vector to be a [110] direction. The measurement of sound velocity was performed by the digital signal processing method. the crystals were placed in stainless steel vessel, which was filled with lysozyme solution used for crystal growth. We observed the longitudinal sound velocity along the [110] direction in the tetragonal is obtained to be 1817 ㎧. Therefore, Young modulus and shear modulus were evaluated to be 2.70 Gpa and 1.02 Gpa, respectively, if we assumed Poisson ratio is 0.33. These results will be discussed at the meeting.

  • PDF

A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior (탄소성 응력집중부에서의 초기피로균열전파수명의 예측)

  • Cho, Sang-Myung;Kohsuke Horikawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF

Collison-Free Trajectory Planning for SCARA robot (스카라 로봇을 위한 충돌 회피 경로 계획)

  • Kim, T.H.;Park, M.S.;Song, S.Y.;Hong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Turbulence Characteristics of a Three-Dimensional Boundary Layer on a Rotating Disk with an Impinging Jet (I) - Mean Flow - (충돌제트를 갖는 회전원판 위 3차원 경계층의 난류특성 (I) - 평균유동장 -)

  • Kang, Hyung Suk;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1277-1289
    • /
    • 1998
  • The objective of the present study is to investigate experimentally the mean flow characteristics of the three-dimensional turbulent boundary layer over a rotating disk with an impinging jet at the center of the disk, which may be regarded as one of the simplest models for the flow in turbomachinery. A relatively strong radial outflow (crossflow) generated from the impinging jet is added to the radial outflow (crossflow) induced by the centrifugal force in order to create the three-dimensional boundary layer. A new calibration technique has been introduced to determine the velocity direction and magnitude using an I-wire probe, where the uncertainties are ${\pm}1.5^{\circ}$ and ${\pm}0.35\;m/s$, respectively, in the laminar boundary layer region, compared with the known exact solutions. The flow in the tangential direction is of similar type to that associated with a favorable pressure gradient, considering that no wake region appears in wall coordinate velocity profiles and the Clauser shape factor is between 4.0 and 5.3. The flow angle is significantly changed by the crossflow generated by the impinging jet.