• Title/Summary/Keyword: Gradient feature

Search Result 279, Processing Time 0.022 seconds

DISTRIBUTION AND KINEMATICS OF FORMALDEHYDE IN DARK CLOUDS IN M17 AND NGC 2024

  • MINN Y. K.;LEE Y. B.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.31-44
    • /
    • 1994
  • The 4.8GHz formaldehyde absorption line in the dark clouds in M17 and NGC 2024 regions has been mapped. In both nebulae, we detected two $H_2CO$ line components. In M17, the 24km $S^{-1}$ cloud is closely associated with the HII region located in front of the radio continuum source, and the 19km $S^{-1}$ cloud is associated with the visual dark clouds with a larger extent which are closer to us. The 19km $S^{-1}$ cloud has a mass motion approaching to the HII region. In both clouds, a velocity gradient from the north-east to the south-west directions is observed. The linewidth has no variation indicating no collapsing motion. In NGC 2024, the 9km $S^{-1}$ feature is extended along the dark bar in front of the bright nebula and a weak second component at 13km $S^{-1}$ is confined to the immediate vicinity of the radio source. Indications are that the 9km $S^{-1}$ cloud is physically associated with the dark bar and the 13km $S^{-1}$ cloud is located behind the radio source. The angular extent, the column density, and the total mass of the clouds are derived. The radial velocities of other molecular lines observed in these clouds are compared.

  • PDF

Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images

  • Raja, C.;Gangatharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1899-1909
    • /
    • 2015
  • Glaucoma is one of the most common causes of blindness which is caused by increase of fluid pressure in the eye which damages the optic nerve and eventually causing vision loss. An automated technique to diagnose glaucoma disease can reduce the physicians’ effort in screening of Glaucoma in a person through the fundal retinal images. In this paper, optimal hyper analytic wavelet transform for Glaucoma detection technique from fundal retinal images is proposed. The optimal coefficients for transformation process are found out using the hybrid GSO-Cuckoo search algorithm. This technique consists of pre-processing module, optimal transformation module, feature extraction module and classification module. The implementation is carried out with MATLAB and the evaluation metrics employed are accuracy, sensitivity and specificity. Comparative analysis is carried out by comparing the hybrid GSO with the conventional GSO. The results reported in our paper show that the proposed technique has performed well and has achieved good evaluation metric values. Two 10- fold cross validated test runs are performed, yielding an average fitness of 91.13% and 96.2% accuracy with CGD-BPN (Conjugate Gradient Descent- Back Propagation Network) and Support Vector Machines (SVM) respectively. The techniques also gives high sensitivity and specificity values. The attained high evaluation metric values show the efficiency of detecting Glaucoma by the proposed technique.

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Graphic Hardware Based Visualization of Three Dimensional Object Boundaries in Volume Data Set Using Three Dimensional Textures (그래픽 하드웨어기반의 3차원 질감을 사용한 볼륨 데이터의 3차원 객체 경계 가시화)

  • Kim, Hong-Jae;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.623-632
    • /
    • 2008
  • In this paper, we used the color transfer function and the opacity transfer function for the internal 3D object visualization of an image volume data. In transfer function, creating values of between boundaries generally is ambiguous. We concentrated to extract boundary features for segmenting the visual volume rendering objects. Consequently we extracted an image gradient feature in spatial domain and created a multi-dimensional transfer function according to the GPU efficient improvement. Finally using these functions we obtained a good research result as an implementing object boundary visualization of the graphic hardware based 3D texture mapping.

  • PDF

Nutrient Front Relating to the Hydrography in the Outflow Region of the Keum River (금강 하구 연안역의 해황과 관련한 영양염 전선)

  • Choi Yong Kyu;Yang Won Seok;Jeong Ju Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.289-296
    • /
    • 2002
  • Using results obtained from field surveys in the outflow region of the Keum River in winter (February 22), spring (May 9), summer (July 31) and autumn (October 17) in 2000, it was described the nutrient front relating to the hydrography. It showed that the horizontal gradients was sharp in the distributions not only in salinity but also in nutrients in the region of the mouth of estuary far away about 20 km from the dyke of the Keum River during the year. The two layer structure was a ubiquitous feature in the inner estuarine side of the region showing the maximum horizontal gradients in salinity and nutrients. Although the absolute values in salinity and nutrient concentrations were distinguished by season, the nutrient front seperates the saltier and nutrients poor water in the open sea from the brackish and nutrients rich water of the plume. These results suggest that the nutrient front coincides with the esturine front in the region of freshwater influence (ROFI) of the Keum River.

Optical Flow for Motion Images with Large Displacement by Functional Expansion

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1680-1691
    • /
    • 2004
  • One of the representative methods of optical flow is a gradient method which estimates the movement of an object based on the differential of image brightness. However, the method is ineffective for large displacement of the object and many improved methods have been proposed to copy with such limitations. One of these improved techniques is the multigrid processing, which is used in many optical flow algorithms. As an alternative novel technique we have been proposing an orthogonal functional expansion method, where whole displacements are expanded from low frequency terms. This method is expected to be applicable to flow estimation with large displacement and deformation including expansion and contraction, which are difficult to cope with by conventional optical flow methods. In the orthogonal functional expansion method, the apparent displacement field is calculated iteratively by a projection method which utilizes derivatives of the invariant constraint equations of brightness constancy. One feature of this method is that differentiation of the input image is not necessary, thereby reducing sensitivity to noise. In this paper, we apply our method to several real images in which the objects undergo large displacement and/or deformation including expansion. We demonstrate the effectiveness of the orthogonal functional expansion method by comparing with conventional methods including our optimally scaled multigrid optical flow algorithm.

  • PDF

AN IMAGE SEGMENTATION LEVEL SET METHOD FOR BUILDING DETECTION

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.610-614
    • /
    • 2006
  • In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.

  • PDF

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

Pedestrian Detection Algorithm using a Gabor Filter Bank (Gabor Filter Bank를 이용한 보행자 검출 알고리즘)

  • Lee, Sewon;Jang, Jin-Won;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2014
  • A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.