• Title/Summary/Keyword: Gradient feature

Search Result 279, Processing Time 0.029 seconds

Texture Feature Analysis of Machined Surface Image Using Intensity Gradient (광 강도변화를 이용한 가공면 영상의 텍스쳐 특징분석)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.49-56
    • /
    • 1998
  • Super precision working technique and machine tool have been continually developed thanks to advanced electronic field. To obtain good result. it is necessary to investigate surface in grinding with $mu extrm{m}$ level. There were quite many researches to satisfy these demands by using non-contact methods through the computer vision. In this study, the texture of working surface was analyzed. co-occurrence matrices was obtained from the surface roughness. Texture parameter was obtained using position operator composed of $ heta$, d according to variation of angle direction and distance. As a result, it was found that surface texture was more affected by direction($\theta$) than distance(d).

  • PDF

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Ultrasonic NDE Classifications with the Gradient Descent Method and Synthetic Aperture Focusing Technique

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.189-200
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an approach which uses LMS method to determine the coordinates of the ultrasonic probe followed by the use of SAFT to estimate the location of the ultrasonic reflector The method is employed for classifying NDE signals from the steam generator tubes in a nuclear power plant. The classification results using this scheme for the ultrasonic signals from cracks and deposits within steam generator tubes are presented.

A Study on the Configuration Control of a Mobile Manipulator Based on the Optimal Cost Function

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2005
  • One of the most important feature of the Mobile Manipulator is redundant freedom. Using the redundant freedom, Mobile Manipulator can move various mode, perform dexterous motion. In this paper, to improve robot job ability, as two robots perform a job in co-operation control, we studied optimal position and posture of Mobile Manipulator with minimum movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using mobility of Mobile robot, weight vector of robots is determined. Using Gradient methode, global motion trajectory is minimized. so the job which Mobile Manipulator perform is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot. and discussed the result.

A sensitivity analysis of machine learning models on fire-induced spalling of concrete: Revealing the impact of data manipulation on accuracy and explainability

  • Mohammad K. al-Bashiti;M.Z. Naser
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.409-423
    • /
    • 2024
  • Using an extensive database, a sensitivity analysis across fifteen machine learning (ML) classifiers was conducted to evaluate the impact of various data manipulation techniques, evaluation metrics, and explainability tools. The results of this sensitivity analysis reveal that the examined models can achieve an accuracy ranging from 72-93% in predicting the fire-induced spalling of concrete and denote the light gradient boosting machine, extreme gradient boosting, and random forest algorithms as the best-performing models. Among such models, the six key factors influencing spalling were maximum exposure temperature, heating rate, compressive strength of concrete, moisture content, silica fume content, and the quantity of polypropylene fiber. Our analysis also documents some conflicting results observed with the deep learning model. As such, this study highlights the necessity of selecting suitable models and carefully evaluating the presence of possible outcome biases.

Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation (정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘)

  • Ju, Jae-Yong;Kim, Min-Jae;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.37-48
    • /
    • 2012
  • Image registration is a process to establish the spatial correspondence between the images of same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we propose an effective registration method for images acquired by multi-sensors, such as EO (electro-optic) and IR (infrared) sensors. Image registration is achieved by extracting features and finding the correspondence between features in each input images. In the recent research, the multi-sensor image registration method that finds corresponding features by exploiting NMI (Normalized Mutual Information) was proposed. Conventional NMI-based image registration methods assume that the statistical correlation between two images should be global, however images from EO and IR sensors often cannot satisfy this assumption. Therefore the registration performance of conventional method may not be sufficient for some practical applications because of the low accuracy of corresponding feature points. The proposed method improves the accuracy of corresponding feature points by combining the gradient orientation as spatial information along with NMI attributes and provides more accurate and robust registration performance. Representative experimental results prove the effectiveness of the proposed method.

Real-time Lane Violation Detection System using Feature Tracking (특징점 추적을 이용한 실시간 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.201-212
    • /
    • 2011
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorism in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. The feature is extracted from the morphological gradient image, which results in constructing robust detection system against shadows, weather conditions, head lights and illumination conditions without distinction day and night. The system shows excellent performance for the data captured at day time, night time, and rainy night time as much as 99.49% for positive recognition ratio and 0.51% for error ratio. Also the system is so fast as much as 91.34 frames per second in average that it may be possible for real-time processing.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

A Study on Seam Tracking and Weld Defects Detecting for Automated Pipe Welding by Using Double Vision Sensors (파이프 용접에서 다중 시각센서를 이용한 용접선 추적 및 용접결함 측정에 관한 연구)

  • 송형진;이승기;강윤희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • At present. welding of most pipes with large diameter is carried out by the manual process. Automation of the welding process is necessary f3r the sake of consistent weld quality and improvement in productivity. In this study, two vision sensors, based on the optical triangulation, were used to obtain the information for seam tracking and detecting the weld defects. Through utilization of the vision sensors, noises were removed, images and 3D information obtained and positions of the feature points detected. The aforementioned process provided the seam and leg position data, calculated the magnitude of the gap, fillet area and leg length and judged the weld defects by ISO 5817. Noises in the images were removed by using the gradient values of the laser stripe's coordinates and various feature points were detected by using an algorithm based on the iterative polygon approximation method. Since the process time is very important, all the aforementioned processes should be conducted during welding.

Sparse Representation based Two-dimensional Bar Code Image Super-resolution

  • Shen, Yiling;Liu, Ningzhong;Sun, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2109-2123
    • /
    • 2017
  • This paper presents a super-resolution reconstruction method based on sparse representation for two-dimensional bar code images. Considering the features of two-dimensional bar code images, Kirsch and LBP (local binary pattern) operators are used to extract the edge gradient and texture features. Feature extraction is constituted based on these two features and additional two second-order derivatives. By joint dictionary learning of the low-resolution and high-resolution image patch pairs, the sparse representation of corresponding patches is the same. In addition, the global constraint is exerted on the initial estimation of high-resolution image which makes the reconstructed result closer to the real one. The experimental results demonstrate the effectiveness of the proposed algorithm for two-dimensional bar code images by comparing with other reconstruction algorithms.