References
- Abo Sabah, S.H., Zainal, N.L., Muhamad Bunnori, N., Megat Johari, M.A. and Hassan, M.H. (2019), "Interfacial behavior between normal substrate and green ultra-high-performance fiber-reinforced concrete under elevated temperatures", Struct. Concrete, 20(6), 1896-1908. https://doi.org/10.1002/suco.201900152.
- Chen, T. and Guestrin, C. (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Mach. Learn., 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Cox, D.R. (1958), "The regression analysis of binary sequences", J. Royal Stat. Soc.: Series B Methodol., 20(2), 215-232. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x.
- Domingos, P. and Pazzani, M. (1996), "Beyond independence: Conditions for the optimality of the simple bayesian classifer", Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, July.
- Duda, R.O., Hart, P.E. and Stork, D.G. (2001), Pattern Classification, 2nd Edition, John Wiley & Sons, Hoboken, NJ, USA.
- Dwaikat, M.B. and Kodur, V.K.R. (2010), "Fire induced spalling in high strength concrete beams", Fire Technol., 46(1), 251-274. https://doi.org/10.1007/s10694-009-0088-6.
- Fisher, R.A. (1936), "The use of multiple measurements in taxonomic problems", Ann. Eugen., 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.
- Fix, E. (1985), Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties, USAF School of Aviation Medicine, Dayton, OH, USA.
- Freund, Y. and Schapire, R.E. (1997), "A decision-theoretic generalization of on-line learning and an application to boosting", J. Comput. Syst. Sci., 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504.
- Geurts, P., Ernst, D. and Wehenkel, L. (2006), "Extremely randomized trees", Mach. Learn., 63(1), 3-42. https://doi.org/10.1007/s10994-006-6226-1.
- Ibrahimbegovic, A., Boulkertous, A., Davenne, L., Muhasilovic, M. and Pokrklic, A. (2010), "On modeling of fire resistance tests on concrete and reinforced-concrete structures", Comput. Concrete, 7(4), 285. https://doi.org/10.12989/cac.2010.7.4.285.
- Kanema, M., Pliya, P., Noumowe, A. and Gallias, J.L. (2011), "Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature", Am. Soc. Civil Eng., 23(7), 921-930. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000272.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W. and Liu, T.Y. (2017), "LightGBM: A highly efficient gradient boosting decision tree", Adv. Neural Inf. Process. Syst., 30, 1-9.
- Khoury, G.A. (2000), "Effect of fire on concrete and concrete structures", Prog. Struct. Eng. Mater., 2(4), 429-447. https://doi.org/10.1002/pse.51.
- Khoury, G.A. (2015), "Passive fire protection of concrete structures", ICE Proc. Struct. Build., 161(3), 135-145. http://doi.org/10.1680/stbu.2008.161.3.135.
- Liu, J.C. and Zhang, Z. (2020), "A machine learning approach to predict explosive spalling of heated concrete", Arch. Civil Mech. Eng., 20(4), 1-25. https://doi.org/10.1007/s43452-020-00135-w.
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biol., 5, 115-133. https://doi.org/10.1007/BF02478259.
- McKinney, J. and Ali, F. (2014), "Artificial neural networks for the spalling classification & failure prediction times of high strength concrete colunms", J. Struct. Fire Eng., 5(3), 203-214. https://doi.org/10.1260/2040-2317.5.3.203.
- Mindeguia, J.C., Carre, H., Pimienta, P. and La Borderie, C. (2015), "Experimental discussion on the mechanisms behind the fire spalling of concrete", Fire Mater., 39(7), 619-635. https://doi.org/10.1002/fam.2254.
- Naser, M.Z. (2023), Machine Learning for Civil and Environmental Engineers: A Practical Approach to Data-Driven Analysis, Explainability, and Causality, John Wiley & Sons, Hoboken, NJ, USA.
- Naser, M.Z. and Kodur, V.K. (2022), "Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns", Eng. Struct., 253, 113824. https://doi.org/10.1016/j.engstruct.2021.113824.
- Naser, M.Z., al-Bashiti, M.K. and Naser, A.Z. (2023), "SPINEX: Similarity-based predictions and explainable neighbors exploration for regression and classification tasks in machine learning", arXiv preprint arXiv:2306.01029. https://doi.org/10.48550/arXiv.2306.01029.
- Ozawa, M. and Morimoto, H. (2014), "Effects of various fibres on high-temperature spalling in high-performance concrete", Constr. Build. Mater., 71, 83-92. https://doi.org/10.1016/j.conbuildmat.2014.07.068.
- Panev, Y., Kotsovinos, P., Deeny, S. and Flint, G. (2021), "The use of machine learning for the prediction of fire resistance of composite shallow floor systems", Fire Technol., 57(6), 3079-3100. https://doi.org/10.1007/s10694-021-01108-y.
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V. and Gulin, A. (2018), "CatBoost: Unbiased boosting with categorical features", Adv. Neural Inf. Process. Syst., 31, 1.
- Quinlan, J.R. (1986), "Induction of decision trees", Mach. Learn., 1(1), 81-106. https://doi.org/10.1007/BF00116251.
- Saberian, M., Shi, L., Sidiq, A., Li, J., Setunge, S. and Li, C.Q. (2019), "Recycled concrete aggregate mixed with crumb rubber under elevated temperature", Constr. Build. Mater., 222, 119-129. https://doi.org/10.1016/j.conbuildmat.2019.06.133.
- Seitllari, A. and Naser, M.Z. (2019), "Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns", Comput. Concrete, 24(3), 271-282. https://doi.org/10.12989/cac.2019.24.3.271.
- Scikit-learn (2023), sklearn.model_selection.GridSearchCV - scikit-learn 1.3.0 documentation; https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
- Tapeh, A.T.G. and Naser, M.Z. (2022), "Artificial intelligence, machine learning, and deep learning in structural engineering: A scientometrics review of trends and best practices", Arch. Comput. Method. Eng., 30(1), 115-159. https://doi.org/10.1007/s11831-022-09793-w.
- Thai, H.T. (2022), "Machine learning for structural engineering: A state-of-the-art review", Struct., 38, 448-491. https://doi.org/10.1016/j.istruc.2022.02.003.
- LightGBM (2023), Welcome to LightGBM's documentation! - LightGBM 3.3.5 documentation; https://lightgbm.readthedocs.io/en/v3.3.5/index.html
- Zhang, H.L. and Davie, C.T. (2013), "A numerical investigation of the influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures", Fire Saf. J., 59, 102-110. https://doi.org/10.1016/j.firesaf.2013.03.019.
- Zhao, J., Zheng, J.J., Peng, G.F. and van Breugel, K. (2014), "A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure", Cement Concrete Res., 65, 64-75. https://doi.org/10.1016/j.cemconres.2014.07.010.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.