• Title/Summary/Keyword: Gradient Thickness

Search Result 386, Processing Time 0.025 seconds

Nondestructive Evaluation of the Characteristics of Degraded Materials Using Backward Radiated Ultrasound

  • Sung D. Kwon;Sung J. Song;Dong H. Bae;Lee, Young Z.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1084-1092
    • /
    • 2002
  • The frequency dependency of Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in two kinds of degraded specimens by scuffing or corrosion. Then, the frequency dependency is compared with the residual stress distribution or the corrosion-fatigue characteristics for the scuffed or corroded specimens, respectively. The width of the backward radiation profile increases with the increase of the variation in residual stress distribution for the scuffed specimens. In the corroded specimens, the profile width decreases with the increase of the effective aging layer thickness and is inversely proportional to the exponent, m, in the Paris' law that can predict the crack size increase due to fatigue. The result observed in this study demonstrates high potential of backward radiated ultrasound as a tool for nondestructive evaluation of subsurface gradient of material degradation generated by scuffing or corrosion.

Multi-Crack Problems for Non-homogeneous Material Subjected to Unsteady Thermal Load (비정상 열 하중을 받는 이질재료의 다중 크랙 문제)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • The purpose of this paper is to investigate the time behavior of a multiple crack problems. It is assumed that the medium contains cracks perpendicular to the crack surfaces, that the thermo-mechanical properties are continuous functions of the thickness coordinate. we use the laminated composite plate model to simulate the material non-homogeneity. By utilizing the Laplace transform and Fourier transform techniques, the multiple crack problems in the non-homogeneous medium is formulated. Singular integral equations are derived and solved to investigate the multiple crack problems. As a numerical illustration, transient thermal stress intensity factors(TSIFs) for a functionally graded material plate subjected to sudden heating on its boundary are provided. The variation in the TSIFs due to the change in material gradient and the crack position is studied.

Edge Detection of Ultrasonic Image Using Neighhood Mean Intensity Difference (주변 평균 밝기차를 이용한 초음파 영상의 에지 검출)

  • Won, Chul-Ho;Koo, Sung-Mo;Kim, Myoung-Nam;Cho, Jin-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.23-26
    • /
    • 1994
  • A new algorithm using a measure for edge detection from ultrasonic image is proposed. Ultrasonic image is blurred by pre-processing for removing speckle noises and precise edge placement is not clear. Because extracted edge from blurred image is thick, a measure utilizing the absolute difference of mean between two windows is used to thin the thickness of extracted edge in blurred image. The algorithm is effective to process blurred image due to the noise filtering that remove speckle noises. Results of the proposed algorithm using a measure show good edge detection performance comparing with other gradient edge operators.

  • PDF

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

Analysis for the Control of Thermal Cracks in a Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 수화열해석)

  • Kim, Sang-Chel;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1205-1210
    • /
    • 2004
  • Cracks in the underground structures are mainly observed due to internal ununiformity of thermal stresses or restraint of structural movement in associate with rapid temperature gradient. Especially, thermal cracks are known to occur easily in a massive structure, but possibility of these depend on the amount of cement applied and ratio of span to height of the structure even though the thickness is less than specification‘s. Thus, this study aims at how to control thermal cracks in a massive subway structure and figures out an optimized construction method and procedure. As results of parametric study for length, height and outer temperature for concrete placement, it is found that hydration heats were not affected by both length and height of concrete placement but thermal stresses were greatly dependent. Most effective ways of controling thermal cracks were to fit a proper ratio of length to height of concrete placement and to decrease temperature of concrete placement as much as possible.

  • PDF

Crystal Growth of Sapphire for GaN Substrates

  • Yu, Y.M.;Jeoung, S.J.;Koh, J.C.;Ryu, B.H.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.157-159
    • /
    • 1998
  • Sapphire crystals were grown by Horizontal Bridgman method. The effects of sliding rate (growth rate) of Molybdenum container, growth atmosphere, temperature gradient and orientation of see on crystal qualities were investigated. The size of the crystals grown was up to 150-200 mm in length, 90 mm in width and 25-35 mm in thickness. Crystals grown under the optimum conditions were colorless, transparent and could not be observed and macroscopic defects, such as bubbles, cracks, twins and mosaic structure. With the grown crystals, prototypes of sapphire substrate for blue wafers were characterized. As a result, we can get hight quality of sapphire wafers with c-axis, 1.5 inches in diameters and 0.33 mm in thickess.

  • PDF

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad;Shafiei, Navvab
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.837-857
    • /
    • 2016
  • In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

Distortion of Eelectrical Double Layer in Liquid Filtration by Fibrous Filters

  • Lee, Myong-Hwa;Hirose, Shogo;Otani, Yoshio
    • Particle and aerosol research
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2014
  • Liquid filtration by membrane filters is essential for the preparation of ultrapure water in semiconductor manufacturing processes. The separation of submicrometer particles suspended in ultrapure water with a laminated fibrous membrane filter was studied numerically and experimentally in the present work. We found that an electrical double layer around a single fiber expanded to a large extent at a low ion concentration, as in ultrapure water, and deformed toward the upstream of the fiber with increasing filtration velocity. Since an increase in the electrical double-layer thickness leads to a decrease in the electrical potential gradient, particles with the same polarity as the fiber approach the fiber more easily and are captured at a high filtration velocity. Experimental results also confirmed that the collection efficiency of polystyrene latex(PSL) particles through a PTFE filter became higher as the filtration velocity increased.

Fire Resistance Performance of High Strength-Light Weight Concrete (고강도를 적용한 1종 경량골재 콘크리트의 내화특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.749-752
    • /
    • 2005
  • Normally, the degradation of concrete member exposed to fire is largely dependent on the fire scale and fire condition. With all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Thus, this study is concerned with experimentally investigating fire resistance of high strength-light weight concrete. From the test result, high strength-light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

Explosive Spalling of Structural Lightweight Aggregate Concrete (구조용 경량골재 콘크리트의 폭렬특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun;Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.477-480
    • /
    • 2006
  • Normally, with all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Especially, high strength concrete and lightweight aggregate concrete is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with explosive spalling of lightweight concrete using structural lightweight aggregate. From the experimental test result, lightweight aggregate concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF