• Title/Summary/Keyword: Gradient Index

Search Result 359, Processing Time 0.022 seconds

Characteristics Design on Helix Angle of the Extruder Screw (압출용 스크루의 나선각에 대한 특성설계)

  • 최부희;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.706-709
    • /
    • 1997
  • Extruders are the heart of the polymer processing industry. The single most important mechanical element of a screw extruder is the screw. The proper design of the geometriy of the extruder screw is of crucial importance to the proper functioning of the extruder. If material transport instabilities occur as a result of improper screw geometry, even the most sophisticated computerized control system cannot solve the problem. For this purpose, characteristics design on helix angle of the extruder screw. This paper presents strength of the screw flight, optimum helix angle versus dimensionless down channel pressure gradient, optimum helix angle versus the power law index in simultaneous optimization, volumetric efficiency versus helix angle at various number of flights and power consumption versus helix angle in the barrel of screw extruder.

  • PDF

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

The use of Gradient Analysis in Spatial Understanding of Urbanization (단계적 변화 분석(gradient analysis)을 적용한 도시화의 공간적 평가)

  • Lee, Dong-Kun;Choe, Hye-Yeong
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.357-366
    • /
    • 2008
  • It is certain that urbanization has transformed the ecological consequences severely, but urban ecosystem is not fully understood yet. Urban growth is not like a static form and it spreads spatially and temporally. Therefore in studying urban ecosystem, it is important to relate the spatial pattern of urbanization to ecological processes. Using gradient analysis, we attempted to quantify the urbanization's spatial impacts in Daejeon-city and Cheonan-city, Chungcheong-province, Korea. Because of Multifunctional Administrative City Planning (MACP), a lot of development projects are planned in Chungcheong-province, Korea. It's important to study about original cities' patterns and impacts. These results can be adopted to future city planning. So several measures such as fragmentation, vegetation index, surface temperature, population density, and income rate were computed along a 75km long and 3km wide transect. The results showed that Daejeon-city has a wider urban center, lower vegetation indexes, and higher surface temperature than Cheonan-city. Therefore in the perspective of urban environments and sustainable urbanism, it seems that Cheonan-city is better than Daejeon-city. The changes along the transect have important ecological implications, and quantifying the urbanization gradient is an important step in understanding urban ecology.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei;She, Gui-Lin;Wu, Fei;Yuan, Shu-Jin;Bai, Ru-Qing;Pu, Hua-Yan;Wang, Shilong;Luo, Jun
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.465-474
    • /
    • 2022
  • Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.

Optical System Design Composed of Spherical SELFOC Lens and Aspherical Plastic Lens for Mobile Phone Camera (1매의 구면 SELFOC 렌즈와 1매의 비구면 플라스틱 렌즈로 구성된 카메라폰용 광학계의 설계)

  • Lee, Yong-Sun;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.108-115
    • /
    • 2008
  • We designed optical systems for a mobile phone camera using a spherical SELFOC lens and an aspherical plastic lens. Since the radial index distribution gives an additional design parameter for optical design, an aspheric lens could be replaced by a spherical lens. The imaging performances of the design were compared with conventional 2P design composed of two aspherical plastic lenses. In the first stage of study, we designed 1GRIN 1P lenses by using commercially available SELFOC materials. But, the conventional 2P lenses had better performance than the 1GRIN 1P lenses. In the 1GRIN 1P designs, the performance depends on index variation of GRIN material, the larger variation gives the better performance. Hence, we tried to design by using fictitious GRIN materials which have large index variation. We found if the index variation could be increased to about 3 times that of currently available SELFOC materials, the 1GRIN 1P lens will have equivalent or better performance than the conventional 2P design.