• 제목/요약/키워드: Graded microstructure

검색결과 34건 처리시간 0.021초

과공정 Al-Si합금의 원심주조시 용탕온도와 금형회전수가 경사기능 조직에 미치는 영향에 대한 해석적 고찰 (A Numerical Study of the Effect of Casting Temperature and Rotational Frequency of Mold on the Functionally Graded Microstructure in Centrifugal Casting of Hyper-eutectic Al-Si Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제29권2호
    • /
    • pp.78-85
    • /
    • 2009
  • Functionally graded microstructure of centrifugal cast Al-Si alloy, especially distribution of primary Si particles according to the changes of melt pouring temperature and rotation frequency was investigated by numerical simulation. Moving velocity of Si particles increased as the melt pouring temperature and rotational frequency of mold increased. Therefore, segregation tendency of primary Si particles toward inner side of cylindrical sample increased as the melt pouring temperature and rotational frequency of mold increased. Rich distribution region of particles was located at 0.9, 0.7, 0.4 mm from inner surface of cylindrical sample under the centrifugal cast condition of $750^{\circ}C$ melt pouring temperature and 1500, 2000 and 2500 rpm mold rotational frequencies, respectively, by numerical simulation.

A new mindlin FG plate model incorporating microstructure and surface energy effects

  • Mahmoud, F.F.;Shaat, M.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.105-130
    • /
    • 2015
  • In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

전자빔에 의한 조성구배계면 Ni/Steel 합금재료의 개발 (Fabrication of Graded-Boundary Ni/steel Material by Electron Beam)

  • 김병철;김도훈
    • 한국레이저가공학회지
    • /
    • 제2권2호
    • /
    • pp.27-33
    • /
    • 1999
  • Electron beam was applied on the low carbon steel in order to fabricate Metal/Metal GBM(Graded Boundary Material). Ni sheet was placed on the steel substrate. The electron beam was irradiated on the surface and produced a homogeous alloyed layer. Sequential repetition of electron beam treatments for 4 times resulted in 8mm thick graded layer. To determine each layers property, optical microscopy, XRD, microhardness tester and EDS were used. The residual stress was measured by the low angle x-ray diffraction method. The graded boundary layer was stepwise profile, but Ni content incresed up to 80 wt% and Fe content decreased 20 wt% near surface. Each layers microstructure and hardness varied by different Fe/Ni composition. The compressive residual stress was induced by martensite transformation in the 1st and End layers and the shrinkage cracks were formed in graded layer by rapid cooling.

  • PDF

Conventional problem solving on the linear and nonlinear buckling of truncated conical functionally graded imperfect micro-tubes

  • Linyun, Zhou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.545-559
    • /
    • 2022
  • This paper studies the buckling response of nonuniform functionally graded micro-sized tubes according to the high-order tube theory (HOTT) and classical beam theory (CBT) in addition to nonlocal strain gradient theory. The microtube is made of axially functionally graded material (AFGM). Both inner and outer tube radiuses are changed along the tube length; the microtube is the truncated conical type of tube. The nonlinear partial differential (PD) the formulations are obtained on the basis of the energy conservation method. Then, the linear and nonlinear results are computed via a powerful numerical approach. Finally, the impact of various parameters on the stability of axially functionally graded (AFG) microtube regarding the buckling analysis is discussed.

Enhanced Performance of La0.6Sr0.4Co0.2Fe0.8O3-\delta (LSCF) Cathodes with Graded Microstructure Fabricated by Tape Casting

  • Nie, Lifang;Liu, Ze;Liu, Mingfei;Yang, Lei;Zhang, Yujun;Liu, Meilin
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.50-56
    • /
    • 2010
  • $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ (LSCF) powders with different particle sizes, synthesized through a citrate complexation method and a gel-casting technique, are used to fabricate porous LSCF cathodes with graded microstructures via tape casting. To create porous electrodes with desired porosity and pore structures, graphite and starch are used as pore former for different layers of the graded cathode. Examination of the microstructures of the as-prepared LSCF cathode using an SEM revealed that both grain size and porosity changed gradually from the catalytically active layer (near the electrodeelectrolyte interface) to the current collection layer (near the electrode-interconnect interface). Impedance analysis showed that a 3-layer LSCF cathode with graded microstructures exhibited much-improved performance compared to that of a single-layer LSCF cathode, corresponding to interfacial resistance of 0.053, 0.11, and 0.27 $\Omega{\cdot}cm^2$ at 800, 750, and $700^{\circ}C$ respectively.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

B390 알루미늄 합금의 초정Si 입자분포에 미치는 원심주조 공정인자의 영향 (Effect of Centrifugal Casting Parameters on The Distribution of Primary Si Particles of B390 Aluminum Alloy)

  • 박정욱;김헌주
    • 한국주조공학회지
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2008
  • To develop a functionally graded microstructure of cylindrical liner, effect of centrifugal casting parameters such as pouring temperature of hyper-eutectic Al-Si alloy melt, mold pre-heating temperature, and rotational frequency of mold on distribution of primary Si particles across wall thickness were investigated. Segregation tendency of Si particles toward inner side of cylindrical liner increased as the increase of rotational frequency of mold, pouring temperature of melt and mold pre-heating temperature. Especially, distribution density of primary Si particles within 1.5 mm from inner surface of cylindrical liner was above 35% under the centrifugal casting condition of $750^{\circ}C$ melt pouring temperature, $300^{\circ}C$ mold pre-heating temperature, and 2500 rpm mold rotational frequency.

가스버너 열충격에 의한 NiCr/ZrO2계 경사기능재의 열적 파괴특성 (Fracture Characteristics of NiCr/ZrO2 Functionally Graded Material by Gas Burner Thermal Shock)

  • 송준희
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.247-252
    • /
    • 2006
  • Joining Yittria Stabilized Zirconia (YSZ) to NiCr metal was fabricated using YSZ/NiCr Functionally Graded Materials (FGM) Interlayer by hot pressing process. Microscopic observations demonstrate that the composition and microstructure of YSZ/NiCr FGM distribute gradually in stepwise way, eliminating the macroscopic ceramic/metal interface such as that in traditional ceramic/metal joint. The thermal characteristics of this YSZ/FGM/NiCr joint were studied by thermal shock testing and therml barrier testing. Thermal shock test was conducted by gas burner rig. Acoustic Emission (AE) monitoring was performed to analyze the microfracture behavior during the thermal shock test. It could be confirmed that FGM was the excellent performance of thermal shock/barrier resistance at above $1000^{\circ}C$.